Activated by different signals, the PhoP/PhoQ two-component system differentially regulates metal uptake.

Eunna Choi, Eduardo A Groisman, Dongwoo Shin
Author Information
  1. Eunna Choi: Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Jangan-gu, Suwon, South Korea.

Abstract

The PhoP/PhoQ two-component system controls several physiological and virulence functions in Salmonella enterica. This system is activated by low Mg(2+), acidic pH, and antimicrobial peptides, but the biological consequences resulting from sensing multiple signals are presently unclear. Here, we report that the PhoP/PhoQ system regulates different Salmonella genes depending on whether the inducing signal is acidic pH or low Mg(2+). When Salmonella experiences acidic pH, the PhoP/PhoQ system promotes Fe(2+) uptake in a process that requires the response regulator RstA, activating transcription of the Fe(2+) transporter gene feoB. In contrast, the PhoP-induced RstA protein did not promote feoB expression at neutral pH with low Mg(2+). The PhoP/PhoQ system promotes the expression of the Mg(2+) transporter mgtA gene only when activated in bacteria starved for Mg(2+). This is because mgtA transcription promoted at high Mg(2+) concentrations by the acidic-pH-activated PhoP protein failed to reach the mgtA coding region due to the mgtA leader region functioning as a Mg(2+) sensor. Our results show that a single two-component regulatory system can regulate distinct sets of genes in response to different input signals.

References

  1. J Biol Chem. 1991 Jan 15;266(2):824-9 [PMID: 1898738]
  2. J Bacteriol. 1996 Dec;178(23):6796-801 [PMID: 8955299]
  3. Cell. 2006 Apr 7;125(1):71-84 [PMID: 16615891]
  4. FEMS Microbiol Lett. 2008 Mar;280(2):226-34 [PMID: 18248433]
  5. J Bacteriol. 1996 Sep;178(17):5092-9 [PMID: 8752324]
  6. Mol Cell. 2007 Apr 27;26(2):165-74 [PMID: 17466620]
  7. Proc Natl Acad Sci U S A. 2005 Feb 22;102(8):2862-7 [PMID: 15703297]
  8. Mol Microbiol. 2007 Aug;65(4):857-75 [PMID: 17627767]
  9. J Bacteriol. 2003 Jul;185(13):3696-702 [PMID: 12813061]
  10. Annu Rev Genet. 2007;41:121-45 [PMID: 18076326]
  11. Cell. 1996 Jan 12;84(1):165-74 [PMID: 8548821]
  12. J Bacteriol. 1995 Aug;177(15):4364-71 [PMID: 7543474]
  13. J Bacteriol. 2003 Nov;185(21):6287-94 [PMID: 14563863]
  14. Cell. 2005 Aug 12;122(3):461-72 [PMID: 16096064]
  15. J Biol Chem. 2008 Apr 18;283(16):10773-83 [PMID: 18270203]
  16. J Bacteriol. 2002 Jun;184(12):3159-66 [PMID: 12029031]
  17. Mol Microbiol. 2002 Apr;44(2):561-71 [PMID: 11972791]
  18. J Bacteriol. 2007 Jul;189(13):4791-9 [PMID: 17468243]
  19. J Bacteriol. 1986 Dec;168(3):1444-50 [PMID: 3536881]
  20. J Bacteriol. 2007 Apr;189(8):3318-21 [PMID: 17293428]
  21. J Bacteriol. 1997 Oct;179(19):6201-4 [PMID: 9324273]
  22. Arch Biochem Biophys. 2000 Jan 1;373(1):1-6 [PMID: 10620317]
  23. J Bacteriol. 1999 Oct;181(20):6223-9 [PMID: 10515908]
  24. Adv Exp Med Biol. 2008;631:7-21 [PMID: 18792679]
  25. J Bacteriol. 1989 Sep;171(9):4742-51 [PMID: 2548998]
  26. Proc Natl Acad Sci U S A. 1986 Jul;83(14):5189-93 [PMID: 3523484]
  27. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6640-5 [PMID: 10829079]
  28. J Biol Chem. 2005 Feb 11;280(6):4089-94 [PMID: 15569664]
  29. Microbiol Mol Biol Rev. 2005 Mar;69(1):12-50 [PMID: 15755952]
  30. FEMS Microbiol Rev. 2003 Jun;27(2-3):215-37 [PMID: 12829269]
  31. J Mol Biol. 2000 Jul 7;300(2):291-305 [PMID: 10873466]
  32. Mol Microbiol. 2007 Jan;63(1):283-93 [PMID: 17229213]
  33. J Bacteriol. 2008 Nov;190(22):7326-34 [PMID: 18790861]
  34. Cell. 2000 Sep 29;103(1):113-25 [PMID: 11051552]
  35. J Bacteriol. 2009 Aug;191(15):4732-49 [PMID: 19376873]
  36. J Bacteriol. 1993 Oct;175(19):6212-9 [PMID: 8407793]
  37. J Bacteriol. 2001 Mar;183(6):1835-42 [PMID: 11222580]
  38. Infect Immun. 2002 Nov;70(11):6032-42 [PMID: 12379679]
  39. Annu Rev Biochem. 2000;69:183-215 [PMID: 10966457]
  40. PLoS Genet. 2009 Mar;5(3):e1000428 [PMID: 19300486]
  41. J Bacteriol. 1998 May;180(9):2409-17 [PMID: 9573193]
  42. Arch Biochem Biophys. 1999 Apr 1;364(1):75-82 [PMID: 10087167]

Grants

  1. /Howard Hughes Medical Institute

MeSH Term

Adenosine Triphosphatases
Bacterial Proteins
Biological Transport
Blotting, Western
Cation Transport Proteins
Gene Expression Regulation, Bacterial
Hydrogen-Ion Concentration
Magnesium
Membrane Transport Proteins
Metals
Phosphorylation
Reverse Transcriptase Polymerase Chain Reaction
Salmonella typhimurium

Chemicals

Bacterial Proteins
Cation Transport Proteins
Membrane Transport Proteins
Metals
PhoQ protein, Bacteria
PhoP protein, Bacteria
Adenosine Triphosphatases
MgtA protein, bacteria
MgtB protein, Salmonella typhimurium
Magnesium