Properties of piriform cortex pyramidal cell dendrites: implications for olfactory circuit design.

Brice Bathellier, Troy W Margrie, Matthew E Larkum
Author Information
  1. Brice Bathellier: Department of Physiology, University of Bern, CH-3012 Bern, Switzerland.

Abstract

Unlike the neocortex, sensory input to the piriform cortex is anatomically segregated in layer 1, making it ideal for studying the dendritic integration of synaptic inputs pivotal for sensory information processing. Here we investigated dendritic integration of olfactory bulb inputs in pyramidal cells using dual patch-clamp recordings along the soma-apical dendritic axis. We found that these dendrites are relatively compact with 50% maximal somatic current loss for synaptic inputs arriving at distal dendritic regions. Distal dendrites could generate small and fast local spikes, but they had little impact on the soma, indicating that they are only weakly active. In contrast to the neocortex, we found no evidence for dendritic Ca(2+) or NMDA spikes though these dendrites actively supported action potential backpropagation with concomitant entry of Ca(2+) ions. Based on experiments and simulations we suggest that regardless of dendritic location, olfactory bulb inputs have nearly uniform potency and are distributed diffusely over the distal apical tree (layer Ia), thereby minimizing sublinear summation effects. This indicates that any stimulus feature extraction performed by these cells will occur at the soma and is based on the nearly linear sum of olfactory bulb inputs, rather than on explicitly designed clusters of functionally related synapses in the dendritic tree.

References

  1. Brain Res. 1998 Dec 14;814(1-2):133-42 [PMID: 9838080]
  2. J Neurosci. 1998 Dec 15;18(24):10464-72 [PMID: 9852584]
  3. Nat Neurosci. 2007 Feb;10(2):206-14 [PMID: 17206140]
  4. J Neurosci. 2007 Jul 11;27(28):7553-8 [PMID: 17626216]
  5. Science. 1997 Jan 10;275(5297):213-5 [PMID: 8985014]
  6. J Neurophysiol. 1982 Apr;47(4):606-21 [PMID: 7069456]
  7. Annu Rev Neurosci. 2005;28:503-32 [PMID: 16033324]
  8. Nat Rev Neurosci. 2002 May;3(5):362-70 [PMID: 11988775]
  9. Annu Rev Neurosci. 1981;4:301-50 [PMID: 7013637]
  10. J Neurophysiol. 1995 Dec;74(6):2366-78 [PMID: 8747199]
  11. J Neurosci. 2004 Dec 8;24(49):11127-36 [PMID: 15590929]
  12. J Neurophysiol. 1993 Sep;70(3):1086-101 [PMID: 8229160]
  13. Neuron. 2008 Feb 28;57(4):586-98 [PMID: 18304487]
  14. J Neurophysiol. 1998 May;79(5):2809-13 [PMID: 9582247]
  15. Nature. 2005 Mar 10;434(7030):221-5 [PMID: 15759002]
  16. Trends Neurosci. 2007 Sep;30(9):456-63 [PMID: 17765330]
  17. Behav Brain Sci. 2000 Aug;23(4):513-33; discussion 533-71 [PMID: 11301542]
  18. Neuron. 2003 Mar 6;37(5):843-52 [PMID: 12628174]
  19. Science. 2009 Aug 7;325(5941):756-60 [PMID: 19661433]
  20. J Neurosci. 2006 Nov 15;26(46):11938-47 [PMID: 17108168]
  21. Neuron. 2001 Mar;29(3):779-96 [PMID: 11301036]
  22. Trends Neurosci. 2007 Mar;30(3):92-100 [PMID: 17224191]
  23. Neuron. 1995 Apr;14(4):795-802 [PMID: 7718241]
  24. Science. 2001 Jan 5;291(5501):138-41 [PMID: 11141567]
  25. J Physiol. 1997 Dec 15;505 ( Pt 3):617-32 [PMID: 9457640]
  26. Neural Comput. 2008 Aug;20(8):2000-36 [PMID: 18336083]
  27. J Neurophysiol. 2008 Feb;99(2):683-94 [PMID: 18045998]
  28. Neuron. 2003 Mar 27;37(6):989-99 [PMID: 12670427]
  29. J Physiol. 2003 Jan 15;546(Pt 2):363-74 [PMID: 12527724]
  30. Neuron. 2006 Jul 20;51(2):227-38 [PMID: 16846857]
  31. J Neurosci. 2003 Sep 17;23(24):8558-67 [PMID: 13679425]
  32. Physiol Rev. 2006 Apr;86(2):409-33 [PMID: 16601265]
  33. Nat Neurosci. 2004 Jun;7(6):621-7 [PMID: 15156147]
  34. Curr Opin Neurobiol. 2008 Jun;18(3):321-31 [PMID: 18804167]
  35. Biophys J. 1974 Oct;14(10):759-90 [PMID: 4424185]
  36. Eur J Neurosci. 2008 Feb;27(4):923-36 [PMID: 18279369]
  37. Neuron. 2006 Feb 2;49(3):357-63 [PMID: 16446140]
  38. Biophys J. 1973 Jul;13(7):648-87 [PMID: 4715583]
  39. Science. 1997 Jan 10;275(5297):209-13 [PMID: 8985013]
  40. J Physiol. 1995 May 15;485 ( Pt 1):1-20 [PMID: 7658365]
  41. Science. 1995 Apr 14;268(5208):297-300 [PMID: 7716524]
  42. Nature. 1994 Jan 6;367(6458):69-72 [PMID: 8107777]
  43. Cold Spring Harb Symp Quant Biol. 1990;55:599-610 [PMID: 2132840]
  44. Nature. 2000 Mar 16;404(6775):285-9 [PMID: 10749211]
  45. J Comp Neurol. 2003 Mar 17;457(4):361-73 [PMID: 12561076]
  46. Nature. 2005 Mar 24;434(7032):470-7 [PMID: 15724148]

Grants

  1. /Wellcome Trust
  2. MC_U117597156/Medical Research Council

MeSH Term

Action Potentials
Animals
Calcium
Computer Simulation
Dendrites
Models, Neurological
Patch-Clamp Techniques
Pyramidal Cells
Rats
Rats, Wistar
Smell
Synapses

Chemicals

Calcium

Word Cloud

Created with Highcharts 10.0.0dendriticinputsolfactorybulbdendritesneocortexsensorypiriformcortexlayerintegrationsynapticpyramidalcellsfounddistalspikessomaCa2+nearlytreeUnlikeinputanatomicallysegregated1makingidealstudyingpivotalinformationprocessinginvestigatedusingdualpatch-clamprecordingsalongsoma-apicalaxisrelativelycompact50%maximalsomaticcurrentlossarrivingregionsDistalgeneratesmallfastlocallittleimpactindicatingweaklyactivecontrastevidenceNMDAthoughactivelysupportedactionpotentialbackpropagationconcomitantentryionsBasedexperimentssimulationssuggestregardlesslocationuniformpotencydistributeddiffuselyapicalIatherebyminimizingsublinearsummationeffectsindicatesstimulusfeatureextractionperformedwilloccurbasedlinearsumratherexplicitlydesignedclustersfunctionallyrelatedsynapsesPropertiescelldendrites:implicationscircuitdesign

Similar Articles

Cited By