Quantitative decision-making in preimplantation genetic (aneuploidy) screening (PGS).

Michael C Summers, Andrew D Foland
Author Information
  1. Michael C Summers: Department of Obstetrics and Gynecology, Division of Reproductive Medicine, University of Massachusetts Memorial Medical Center, Worcester, MA, USA. michael_c_summers@comcast.net

Abstract

PURPOSE: To analyze using hypergeometric probability statistics the impact of performing preimplantation genetic screening (PGS) on a cohort of day 3 cleavage stage embryos.
METHODS: Statistical mathematical modeling.
RESULTS: We find the benefit of performing PGS is highly dependent on the number of day 3 embryos available for biopsy. Additional hidden variables that determine the outcome of PGS are the rates of aneuploidy and mosaicism, and the probability of a chromosomally mosaic embryo to test "normal". If PGS is performed, our analysis shows that many combinations of the number of biopsiable embryos, and the rates of aneuploidy and mosaicism results in a marginal benefit from the intervention. Other combinations are detrimental if PGS is actually undertaken. Finally, increases in PGS error rates lead to a rapid loss in the ability of PGS to provide useful discriminatory information.
CONCLUSION: We set out the statistical framework to determine the limits of PGS when a specific number of day 3 preimplantation embryos are available for biopsy. In general, PGS cannot be recommended a priori for a specific clinical situation due to the statistical uncertainties associated with the different hidden variable quantitative parameters considered important to the clinical outcome.

References

  1. Hum Reprod. 1999 Sep;14(9):2191-9 [PMID: 10469680]
  2. Hum Reprod. 2008 Oct;23(10):2179-81 [PMID: 18614616]
  3. Fertil Steril. 2008 Oct;90(4):1287-9 [PMID: 18061593]
  4. Hum Reprod. 2008 Jul;23(7):1476-8 [PMID: 18539624]
  5. Hum Reprod. 2008 Dec;23(12):2629-45 [PMID: 18641400]
  6. Hum Reprod. 2008 Dec;23(12):2818-25 [PMID: 18930977]
  7. Reprod Biomed Online. 2003 Mar;6(2):226-31 [PMID: 12676005]
  8. Hum Reprod Update. 2007 Jan-Feb;13(1):15-25 [PMID: 16960015]
  9. Hum Reprod. 2004 Dec;19(12):2849-58 [PMID: 15471934]
  10. N Engl J Med. 2007 Oct 25;357(17):1770; author reply 1770-1 [PMID: 17969227]
  11. N Engl J Med. 2007 Oct 25;357(17):1769-70; author reply 1770-1 [PMID: 17960019]
  12. Mol Cell Endocrinol. 2001 Oct 22;183 Suppl 1:S29-34 [PMID: 11576729]
  13. Hum Genet. 2000 Feb;106(2):210-7 [PMID: 10746563]
  14. Fertil Steril. 2009 Jul;92(1):157-62 [PMID: 18692827]
  15. Am J Hum Genet. 1994 Jul;55(1):150-9 [PMID: 8023843]
  16. N Engl J Med. 2007 Jul 5;357(1):9-17 [PMID: 17611204]
  17. Reprod Biomed Online. 2003 Jul-Aug;7(1):91-7 [PMID: 12930584]
  18. N Engl J Med. 2007 Oct 25;357(17):1770; author reply 1770-1 [PMID: 17969226]
  19. Hum Reprod. 2002 Feb;17(2):413-9 [PMID: 11821287]
  20. Hum Reprod. 2001 Sep;16(9):1954-8 [PMID: 11527904]
  21. Reprod Biomed Online. 2008 Jan;16(1):134-47 [PMID: 18252060]
  22. Hum Reprod. 2008 Dec;23(12):2806-12 [PMID: 18583331]
  23. Hum Reprod. 2008 Aug;23(8):1686-90 [PMID: 18579511]
  24. Fertil Steril. 2009 Jun;91(6):2355-60 [PMID: 18554589]
  25. Hum Reprod. 2008 Mar;23(3):478-80 [PMID: 18203706]
  26. Hum Reprod. 2008 Nov;23(11):2596-608 [PMID: 18664475]
  27. Hum Reprod. 1993 Dec;8(12):2185-91 [PMID: 8150922]
  28. Hum Reprod. 2009 Jul;24(7):1538-41 [PMID: 19346523]
  29. Hum Reprod. 1995 Apr;10(4):1014-20 [PMID: 7650111]
  30. Fertil Steril. 2006 Jan;85(1):51-6 [PMID: 16412730]
  31. Fertil Steril. 2010 Feb;93(2):364-73 [PMID: 19249029]
  32. Hum Reprod. 2000 Dec;15(12):2634-43 [PMID: 11098037]
  33. Fertil Steril. 2000 Mar;73(3):558-64 [PMID: 10689013]
  34. Hum Reprod. 2005 Nov;20(11):3198-203 [PMID: 16055454]
  35. Hum Reprod. 2008 Dec;23(12):2622-5 [PMID: 19015134]
  36. Hum Reprod Update. 1995 May;1(3):201-15 [PMID: 9187939]
  37. Fertil Steril. 2010 Jul;94(2):408-30 [PMID: 19409550]
  38. Trends Genet. 1997 Jul;13(7):270-5 [PMID: 9242049]
  39. Hum Reprod. 2008 Mar;23(3):481-92 [PMID: 18156649]
  40. Fertil Steril. 1999 Nov;72(5):837-44 [PMID: 10560987]
  41. Hum Reprod Update. 2004 Jan-Feb;10(1):79-94 [PMID: 15005466]
  42. Fertil Steril. 2007 Dec;88(6):1497-504 [PMID: 17945219]
  43. Reprod Biomed Online. 2003 Apr-May;6(3):323-31 [PMID: 12735868]
  44. Cytogenet Genome Res. 2005;111(3-4):237-44 [PMID: 16192699]
  45. Fertil Steril. 2007 Mar;87(3):496-503 [PMID: 17141767]
  46. Prenat Diagn. 1998 Dec;18(13):1459-66 [PMID: 9949446]
  47. Fertil Steril. 1998 May;69(5):904-8 [PMID: 9591501]
  48. Fertil Steril. 2008 Apr;89(4):780-8 [PMID: 18353323]
  49. Hum Reprod. 1995 Dec;10(12):3255-8 [PMID: 8822454]
  50. Hum Genet. 1997 Jun;99(6):755-60 [PMID: 9187668]
  51. Hum Reprod. 2000 Aug;15(8):1781-6 [PMID: 10920103]
  52. Mol Hum Reprod. 2000 Nov;6(11):1055-62 [PMID: 11044470]
  53. Hum Reprod. 2005 Aug;20(8):2363-4; author reply 2364-5 [PMID: 16024542]
  54. Hum Reprod. 2008 Dec;23(12):2626-8 [PMID: 18948310]
  55. Hum Reprod. 2008 Dec;23(12):2617-21 [PMID: 19015133]
  56. Fertil Steril. 2007 Oct;88(4):781-4 [PMID: 17920402]

MeSH Term

Aneuploidy
Blastomeres
Embryo, Mammalian
Female
Genetic Testing
Humans
Models, Biological
Mosaicism
Preimplantation Diagnosis
Reproductive Techniques, Assisted

Word Cloud

Created with Highcharts 10.0.0PGSembryospreimplantationday3numberratesaneuploidyprobabilityperforminggeneticscreeningbenefitavailablebiopsyhiddendetermineoutcomemosaicismcombinationsstatisticalspecificclinicalPURPOSE:analyzeusinghypergeometricstatisticsimpactcohortcleavagestageMETHODS:StatisticalmathematicalmodelingRESULTS:findhighlydependentAdditionalvariableschromosomallymosaicembryotest"normal"performedanalysisshowsmanybiopsiableresultsmarginalinterventiondetrimentalactuallyundertakenFinallyincreaseserrorleadrapidlossabilityprovideusefuldiscriminatoryinformationCONCLUSION:setframeworklimitsgeneralrecommendedpriorisituationdueuncertaintiesassociateddifferentvariablequantitativeparametersconsideredimportantQuantitativedecision-making

Similar Articles

Cited By