Cancer systems biology: a network modeling perspective.

Pamela K Kreeger, Douglas A Lauffenburger
Author Information
  1. Pamela K Kreeger: Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.

Abstract

Cancer is now appreciated as not only a highly heterogenous pathology with respect to cell type and tissue origin but also as a disease involving dysregulation of multiple pathways governing fundamental cell processes such as death, proliferation, differentiation and migration. Thus, the activities of molecular networks that execute metabolic or cytoskeletal processes, or regulate these by signal transduction, are altered in a complex manner by diverse genetic mutations in concert with the environmental context. A major challenge therefore is how to develop actionable understanding of this multivariate dysregulation, with respect both to how it arises from diverse genetic mutations and to how it may be ameliorated by prospective treatments. While high-throughput experimental platform technologies ranging from genomic sequencing to transcriptomic, proteomic and metabolomic profiling are now commonly used for molecular-level characterization of tumor cells and surrounding tissues, the resulting data sets defy straightforward intuitive interpretation with respect to potential therapeutic targets or the effects of perturbation. In this review article, we will discuss how significant advances can be obtained by applying computational modeling approaches to elucidate the pathways most critically involved in tumor formation and progression, impact of particular mutations on pathway operation, consequences of altered cell behavior in tissue environments and effects of molecular therapeutics.

References

  1. Cell. 2006 Dec 1;127(5):905-15 [PMID: 17129778]
  2. Genes Dev. 2009 Aug 15;23(16):1895-909 [PMID: 19608766]
  3. FEBS J. 2009 Feb;276(4):1024-35 [PMID: 19154344]
  4. Nat Rev Cancer. 2008 Mar;8(3):227-34 [PMID: 18273038]
  5. Mol Syst Biol. 2009;5:239 [PMID: 19156131]
  6. Acta Biotheor. 2008 Sep;56(3):173-96 [PMID: 18288572]
  7. Nature. 2005 Oct 20;437(7062):1173-8 [PMID: 16189514]
  8. Cell. 2006 Mar 24;124(6):1225-39 [PMID: 16564013]
  9. Biosystems. 2006 Feb-Mar;83(2-3):81-90 [PMID: 16426740]
  10. Mol Biol Cell. 2006 Mar;17(3):1261-72 [PMID: 16371504]
  11. Mol Syst Biol. 2007;3:144 [PMID: 18004277]
  12. Mol Cell Proteomics. 2008 Oct;7(10):2048-60 [PMID: 18487680]
  13. Proc Natl Acad Sci U S A. 2007 Jul 31;104(31):12867-72 [PMID: 17646646]
  14. Front Biosci. 2007 May 01;12:3468-74 [PMID: 17485314]
  15. Proc Natl Acad Sci U S A. 2006 Nov 28;103(48):18261-6 [PMID: 17114293]
  16. Oncogene. 2007 Feb 26;26(9):1268-75 [PMID: 17322911]
  17. Cancer. 2009 Aug 15;115(16):3618-30 [PMID: 19479976]
  18. Sci Signal. 2009 Jul 28;2(81):ra39 [PMID: 19638616]
  19. Biophys J. 2005 Dec;89(6):3884-94 [PMID: 16199495]
  20. Syst Biol (Stevenage). 2006 Nov;153(6):457-66 [PMID: 17186707]
  21. Mol Syst Biol. 2009;5:331 [PMID: 19953085]
  22. Mol Cell. 2008 Apr 11;30(1):11-25 [PMID: 18406323]
  23. Nat Rev Mol Cell Biol. 2006 Jul;7(7):505-16 [PMID: 16829981]
  24. PLoS Comput Biol. 2007 Aug;3(8):e163 [PMID: 17722974]
  25. J Theor Biol. 2009 Oct 21;260(4):545-62 [PMID: 19615383]
  26. Bioinformatics. 2009 Sep 15;25(18):2389-96 [PMID: 19578172]
  27. Mol Syst Biol. 2009;5:246 [PMID: 19225459]
  28. Mol Cell. 2008 May 9;30(3):277-89 [PMID: 18471974]
  29. J Biol Chem. 2005 Feb 18;280(7):6157-69 [PMID: 15572377]
  30. Nat Genet. 2000 Mar;24(3):236-44 [PMID: 10700175]
  31. PLoS Biol. 2008 Dec 2;6(12):2831-52 [PMID: 19053173]
  32. Nat Rev Cancer. 2008 Aug;8(8):592-603 [PMID: 18650835]
  33. BMC Syst Biol. 2007 Feb 15;1:13 [PMID: 17408503]
  34. Sci Signal. 2009 Jun 30;2(77):ra31 [PMID: 19567914]
  35. FEBS Lett. 2008 Apr 9;582(8):1266-70 [PMID: 18282479]
  36. Science. 2005 Apr 22;308(5721):523-9 [PMID: 15845847]
  37. Cell. 2009 Mar 6;136(5):823-37 [PMID: 19269363]
  38. Mol Pharmacol. 2008 Jun;73(6):1668-78 [PMID: 18349105]
  39. Cancer Res. 2009 Jun 15;69(12):4948-50 [PMID: 19509220]
  40. Cancer Res. 2009 Aug 15;69(16):6713-20 [PMID: 19638581]
  41. Curr Genomics. 2008;9(5):349-60 [PMID: 19517027]
  42. Proc Natl Acad Sci U S A. 2009 Jan 20;106(3):785-90 [PMID: 19139404]
  43. Phys Biol. 2009 Mar 25;6(1):016008 [PMID: 19321920]
  44. Bioinformatics. 2005 Mar;21(6):741-53 [PMID: 15479714]
  45. Proc Natl Acad Sci U S A. 2008 Oct 21;105(42):16224-9 [PMID: 18852474]
  46. Science. 1988 Apr 8;240(4849):177-84 [PMID: 2451290]
  47. Mol Syst Biol. 2008;4:169 [PMID: 18277385]
  48. Nat Genet. 2005 Apr;37(4):382-90 [PMID: 15778709]
  49. Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Feb;65(2 Pt 1):021907 [PMID: 11863563]
  50. Mol Syst Biol. 2009;5:256 [PMID: 19357636]
  51. PLoS Comput Biol. 2009 Aug;5(8):e1000438 [PMID: 19662154]
  52. Mol Cell. 2009 Apr 10;34(1):104-14 [PMID: 19362539]
  53. Nat Rev Cancer. 2009 Apr;9(4):274-84 [PMID: 19308067]
  54. Science. 2008 Feb 1;319(5863):617-20 [PMID: 18239125]
  55. Nature. 2009 May 21;459(7245):428-32 [PMID: 19363473]
  56. Biophys J. 2009 Jul 22;97(2):415-34 [PMID: 19619456]
  57. Nature. 2006 May 4;441(7089):106-10 [PMID: 16572121]
  58. Mol Cell Proteomics. 2005 Oct;4(10):1569-90 [PMID: 16030008]
  59. Nat Rev Cancer. 2006 Sep;6(9):735-41 [PMID: 16915294]
  60. Exp Cell Res. 2009 Feb 15;315(4):717-25 [PMID: 19022246]
  61. PLoS Comput Biol. 2009 Apr;5(4):e1000340 [PMID: 19343194]
  62. BMC Syst Biol. 2009 Jan 01;3:1 [PMID: 19118495]
  63. Science. 2007 Oct 19;318(5849):463-7 [PMID: 17947584]
  64. Curr Opin Chem Biol. 2006 Aug;10(4):294-302 [PMID: 16822703]
  65. Cell. 2000 Jan 7;100(1):57-70 [PMID: 10647931]
  66. Sci Signal. 2009 Jul 28;2(81):ra40 [PMID: 19638617]
  67. Nature. 2008 Oct 23;455(7216):1061-8 [PMID: 18772890]
  68. Cell. 2007 Jun 29;129(7):1415-26 [PMID: 17570479]
  69. Cancer Res. 2008 Jan 15;68(2):369-78 [PMID: 18199530]
  70. Cell Mol Biol Lett. 2006;11(4):506-25 [PMID: 16977376]
  71. BMC Syst Biol. 2008 Aug 18;2:75 [PMID: 18706112]
  72. PLoS Comput Biol. 2007 Jan 5;3(1):e4 [PMID: 17206861]
  73. Carcinogenesis. 2008 Jun;29(6):1092-5 [PMID: 18453542]
  74. Nat Rev Mol Cell Biol. 2006 Nov;7(11):820-8 [PMID: 17057752]
  75. Genome Biol. 2009;10(3):R31 [PMID: 19317917]
  76. Nat Cell Biol. 2006 Nov;8(11):1195-203 [PMID: 17060902]
  77. Biophys J. 2008 Sep;95(5):2203-18 [PMID: 18515372]
  78. Science. 2008 Sep 26;321(5897):1801-6 [PMID: 18772397]
  79. Cancer Res. 2009 Oct 15;69(20):8191-9 [PMID: 19789336]
  80. Theor Biol Med Model. 2007 Dec 21;4:50 [PMID: 18154660]
  81. BMC Syst Biol. 2009 Jan 26;3:13 [PMID: 19171061]
  82. Trends Biotechnol. 2003 Jun;21(6):255-62 [PMID: 12788545]
  83. Proc Natl Acad Sci U S A. 2007 Mar 6;104(10):4008-13 [PMID: 17360468]
  84. J Math Biol. 2009 Apr;58(4-5):765-98 [PMID: 18781303]
  85. Science. 2007 Nov 16;318(5853):1108-13 [PMID: 17932254]
  86. Nature. 2004 Sep 2;431(7004):99-104 [PMID: 15343339]
  87. Trends Genet. 2007 May;23(5):232-7 [PMID: 17382429]

Grants

  1. U54-CA112967-03/NCI NIH HHS

MeSH Term

Humans
Models, Biological
Neoplasms
Systems Biology

Word Cloud

Created with Highcharts 10.0.0respectcellmutationsCancernowtissuedysregulationpathwaysprocessesmolecularaltereddiversegenetictumoreffectsmodelingappreciatedhighlyheterogenouspathologytypeoriginalsodiseaseinvolvingmultiplegoverningfundamentaldeathproliferationdifferentiationmigrationThusactivitiesnetworksexecutemetaboliccytoskeletalregulatesignaltransductioncomplexmannerconcertenvironmentalcontextmajorchallengethereforedevelopactionableunderstandingmultivariatearisesmayamelioratedprospectivetreatmentshigh-throughputexperimentalplatformtechnologiesranginggenomicsequencingtranscriptomicproteomicmetabolomicprofilingcommonlyusedmolecular-levelcharacterizationcellssurroundingtissuesresultingdatasetsdefystraightforwardintuitiveinterpretationpotentialtherapeutictargetsperturbationreviewarticlewilldiscusssignificantadvancescanobtainedapplyingcomputationalapproacheselucidatecriticallyinvolvedformationprogressionimpactparticularpathwayoperationconsequencesbehaviorenvironmentstherapeuticssystemsbiology:networkperspective

Similar Articles

Cited By