Kinetics of VO2 limb blood flow and regional muscle deoxygenation in young adults during moderate intensity, knee-extension exercise.

Gregory R duManoir, Darren S DeLorey, John M Kowalchuk, Donald H Paterson
Author Information
  1. Gregory R duManoir: School of Kinesiology, Canadian Centre for Activity and Aging, The University of Western Ontario, London, ON, Canada.

Abstract

The kinetics of pulmonary O(2) uptake (VO(2p)), limb blood flow (LBF) and deoxygenation (DeltaHHb) of the vastus lateralis (VL) and vastus medialis (VM) muscles during the transition to moderate-intensity knee-extension exercise (MOD) was examined. Seven males (27 +/- 5 years; mean +/- SD) performed repeated step transitions (n = 4) from passive exercise to MOD. Breath by breath VO(2p) femoral artery LBF, and VL and VM muscle DeltaHHb were measured, respectively, by mass spectrometer and volume turbine, Doppler ultrasound and near-infrared spectroscopy. Phase 2 VO(2p), LBF, and HHb data were fit with a mono-exponential model. The time constant (tau) of the VO(2p) and LBF response were not different (tauVO(2p), 24 +/- 6 s; tauLBF, 23 +/- 8 s). The DeltaHHb response did not differ between VL and VM in amplitude (VL 6.97 +/- 4.22 a.u.; VM 7.24 +/- 3.99 a.u.), time delay (DeltaHHb(TD): VL 17 +/- 2 s; VM 15 +/- 1 s), time constant (tauDeltaHHb: VL 11 +/- 6 s; VM 13 +/- 4 s), or effective time constant [tau'DeltaHHb (= DeltaHHb(TD) + tauDeltaHHb): VL 28 +/- 7 s; VM 28 +/- 4 s]. Adjustments in DeltaHHb in VL and VM depict a similar balance of regional O(2) delivery and utilization within the quadriceps muscle group. The tau'DeltaHHb and tauVO(2p) were similar, however, the DeltaHHb displayed an "overshoot" relative to the steady-state levels reflecting a slower alteration of microvascular blood flow (O(2) delivery) relative to O(2) utilization, necessitating a greater reliance on O(2) extraction.

References

  1. J Appl Physiol (1985). 1996 Sep;81(3):1331-8 [PMID: 8889771]
  2. Am J Physiol. 1998 Jan;274(1):H314-22 [PMID: 9458882]
  3. Circ Res. 2002 Nov 29;91(11):1046-55 [PMID: 12456491]
  4. Am J Physiol Regul Integr Comp Physiol. 2008 Feb;294(2):R577-84 [PMID: 18032470]
  5. J Appl Physiol Respir Environ Exerc Physiol. 1981 Dec;51(6):1662-75 [PMID: 6798003]
  6. J Appl Physiol (1985). 2004 Jul;97(1):165-72 [PMID: 15003999]
  7. Am J Physiol Regul Integr Comp Physiol. 2005 Jan;288(1):R212-20 [PMID: 15331378]
  8. Med Sci Sports Exerc. 1994 Apr;26(4):440-6 [PMID: 8201899]
  9. J Physiol. 2006 Dec 15;577(Pt 3):985-96 [PMID: 16990406]
  10. J Physiol. 1999 Aug 1;518 ( Pt 3):921-32 [PMID: 10421675]
  11. J Appl Physiol (1985). 1999 Apr;86(4):1101-13 [PMID: 10194190]
  12. Exp Physiol. 2006 Jul;91(4):661-71 [PMID: 16556660]
  13. J Appl Physiol (1985). 1994 Mar;76(3):1388-93 [PMID: 8005887]
  14. J Appl Physiol (1985). 1996 Mar;80(3):988-98 [PMID: 8964765]
  15. J Appl Physiol (1985). 1994 Oct;77(4):1742-9 [PMID: 7836194]
  16. J Anat. 1995 Oct;187 ( Pt 2):403-11 [PMID: 7592003]
  17. J Appl Physiol (1985). 2001 Oct;91(4):1845-53 [PMID: 11568171]
  18. J Biomech. 2006;39(2):246-54 [PMID: 16321626]
  19. Respir Physiol Neurobiol. 2006 Oct 27;153(3):237-49 [PMID: 16376620]
  20. J Appl Physiol (1985). 1998 Nov;85(5):1622-8 [PMID: 9804561]
  21. Exp Physiol. 2001 Sep;86(5):659-65 [PMID: 11571495]
  22. J Appl Physiol (1985). 2005 Aug;99(2):683-90 [PMID: 15817720]
  23. J Appl Physiol (1985). 2004 Sep;97(3):998-1005 [PMID: 15133009]
  24. Am J Physiol. 1997 Jun;272(6 Pt 2):H2655-63 [PMID: 9227543]
  25. J Physiol. 2005 Mar 15;563(Pt 3):903-13 [PMID: 15637098]
  26. J Appl Physiol (1985). 2007 Dec;103(6):2049-56 [PMID: 17885024]
  27. Philos Trans R Soc Lond B Biol Sci. 1997 Jun 29;352(1354):677-83 [PMID: 9232855]
  28. Acta Physiol Scand. 2000 Apr;168(4):551-9 [PMID: 10759592]
  29. J Appl Physiol (1985). 2004 Aug;97(2):731-8 [PMID: 15247201]
  30. J Appl Physiol (1985). 2005 Nov;99(5):1822-34 [PMID: 16037398]
  31. Am J Physiol. 1982 Aug;243(2):H296-306 [PMID: 7114239]
  32. Am J Physiol Heart Circ Physiol. 2003 Mar;284(3):H979-86 [PMID: 12446282]
  33. Am J Physiol. 1995 Dec;269(6 Pt 2):H2155-61 [PMID: 8594927]
  34. J Appl Physiol (1985). 2003 Mar;94(3):953-8 [PMID: 12433855]
  35. J Appl Physiol (1985). 2005 Oct;99(4):1462-70 [PMID: 15890756]
  36. Respir Physiol Neurobiol. 2005 May 12;147(1):91-103 [PMID: 15848127]
  37. J Appl Physiol (1985). 2003 Jul;95(1):113-20 [PMID: 12679363]
  38. Eur J Appl Physiol. 2003 Oct;90(3-4):242-9 [PMID: 14556076]
  39. Eur J Appl Physiol. 2000 Nov;83(4 -5):395-401 [PMID: 11138581]
  40. J Appl Physiol (1985). 2005 May;98(5):1820-8 [PMID: 15640391]
  41. J Appl Physiol (1985). 2004 Jul;97(1):393-403 [PMID: 15220322]
  42. Ultrasound Med Biol. 1985 Jul-Aug;11(4):625-41 [PMID: 2931884]
  43. J Appl Physiol (1985). 2007 Sep;103(3):771-8 [PMID: 17495116]
  44. Methods Inf Med. 1997 Dec;36(4-5):364-7 [PMID: 9470400]
  45. Exp Physiol. 2004 May;89(3):293-302 [PMID: 15123565]
  46. J Appl Physiol (1985). 2003 Jul;95(1):149-58 [PMID: 12611769]

MeSH Term

Adult
Exercise
Femoral Artery
Humans
Knee Joint
Leg
Male
Muscle, Skeletal
Oxygen
Oxygen Consumption
Pulmonary Gas Exchange
Range of Motion, Articular
Regional Blood Flow
Spectroscopy, Near-Infrared
Ultrasonography, Doppler

Chemicals

Oxygen

Word Cloud

Created with Highcharts 10.0.0+/-VLVM2DeltaHHbs2pOVOLBF4timebloodflowexercisemuscleconstant6limbdeoxygenationvastusknee-extensionMOD=responsetauVO24au7TD:28similarregionaldeliveryutilizationrelativekineticspulmonaryuptakelateralismedialismusclestransitionmoderate-intensityexaminedSevenmales275yearsmeanSDperformedrepeatedsteptransitionsnpassiveBreathbreathfemoralarterymeasuredrespectivelymassspectrometervolumeturbineDopplerultrasoundnear-infraredspectroscopyPhaseHHbdatafitmono-exponentialmodeltaudifferenttauLBF238differamplitude9722399delay17151tauDeltaHHb:1113effective[tau'DeltaHHb+tauDeltaHHbs]Adjustmentsdepictbalancewithinquadricepsgrouptau'DeltaHHbhoweverdisplayed"overshoot"steady-statelevelsreflectingsloweralterationmicrovascularnecessitatinggreaterrelianceextractionKineticsVO2youngadultsmoderateintensity

Similar Articles

Cited By