Is evolution Darwinian or/and Lamarckian?

Eugene V Koonin, Yuri I Wolf
Author Information
  1. Eugene V Koonin: National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA. koonin@ncbi.nlm.nih.gov

Abstract

BACKGROUND: The year 2009 is the 200th anniversary of the publication of Jean-Bapteste Lamarck's Philosophie Zoologique and the 150th anniversary of Charles Darwin's On the Origin of Species. Lamarck believed that evolution is driven primarily by non-randomly acquired, beneficial phenotypic changes, in particular, those directly affected by the use of organs, which Lamarck believed to be inheritable. In contrast, Darwin assigned a greater importance to random, undirected change that provided material for natural selection.
THE CONCEPT: The classic Lamarckian scheme appears untenable owing to the non-existence of mechanisms for direct reverse engineering of adaptive phenotypic characters acquired by an individual during its life span into the genome. However, various evolutionary phenomena that came to fore in the last few years, seem to fit a more broadly interpreted (quasi)Lamarckian paradigm. The prokaryotic CRISPR-Cas system of defense against mobile elements seems to function via a bona fide Lamarckian mechanism, namely, by integrating small segments of viral or plasmid DNA into specific loci in the host prokaryote genome and then utilizing the respective transcripts to destroy the cognate mobile element DNA (or RNA). A similar principle seems to be employed in the piRNA branch of RNA interference which is involved in defense against transposable elements in the animal germ line. Horizontal gene transfer (HGT), a dominant evolutionary process, at least, in prokaryotes, appears to be a form of (quasi)Lamarckian inheritance. The rate of HGT and the nature of acquired genes depend on the environment of the recipient organism and, in some cases, the transferred genes confer a selective advantage for growth in that environment, meeting the Lamarckian criteria. Various forms of stress-induced mutagenesis are tightly regulated and comprise a universal adaptive response to environmental stress in cellular life forms. Stress-induced mutagenesis can be construed as a quasi-Lamarckian phenomenon because the induced genomic changes, although random, are triggered by environmental factors and are beneficial to the organism.
CONCLUSION: Both Darwinian and Lamarckian modalities of evolution appear to be important, and reflect different aspects of the interaction between populations and the environment.

References

  1. Mol Microbiol. 2002 Mar;43(6):1565-75 [PMID: 11952905]
  2. Behav Genet. 1975 Apr;5(2):115-25 [PMID: 1093540]
  3. Mol Cell. 2005 Sep 16;19(6):791-804 [PMID: 16168374]
  4. J Exp Zool B Mol Dev Evol. 2009 Nov 15;312(7):665-6 [PMID: 19790195]
  5. J Struct Funct Genomics. 2003;3(1-4):1-17 [PMID: 12836680]
  6. Science. 1984 Nov 16;226(4676):792-801 [PMID: 15739260]
  7. Crit Rev Biochem Mol Biol. 2007 Sep-Oct;42(5):399-435 [PMID: 17917874]
  8. Cell. 2007 Feb 23;128(4):641-5 [PMID: 17320501]
  9. Cell. 2000 Nov 22;103(5):723-31 [PMID: 11114329]
  10. Annu Rev Microbiol. 2001;55:709-42 [PMID: 11544372]
  11. Curr Opin Genet Dev. 1997 Dec;7(6):829-34 [PMID: 9468794]
  12. Mol Biol Evol. 2005 Aug;22(8):1721-32 [PMID: 15901840]
  13. Cell. 2009 Feb 20;136(4):642-55 [PMID: 19239886]
  14. Genetics. 2008 Nov;180(3):1275-88 [PMID: 18757930]
  15. Structure. 2009 Jun 10;17(6):904-12 [PMID: 19523907]
  16. Nature. 2004 Jan 1;427(6969):72-4 [PMID: 14688795]
  17. Cell. 2009 Feb 20;136(4):669-87 [PMID: 19239888]
  18. Science. 1995 Jun 16;268(5217):1616-9 [PMID: 7777859]
  19. Cell. 2009 Feb 20;136(4):615-28 [PMID: 19239884]
  20. Nat Genet. 2005 Dec;37(12):1372-5 [PMID: 16311593]
  21. Trends Cell Biol. 1999 Dec;9(12):M5-8 [PMID: 10611671]
  22. J Mol Med (Berl). 2007 Feb;85(2):139-48 [PMID: 17180667]
  23. Nature. 1970 Aug 8;227(5258):561-3 [PMID: 4913914]
  24. Science. 2008 May 23;320(5879):1047-50 [PMID: 18497291]
  25. Science. 2000 Mar 31;287(5462):2494-7 [PMID: 10741970]
  26. Genome Res. 2009 May;19(5):744-56 [PMID: 19411599]
  27. Trends Microbiol. 2009 Apr;17(4):163-71 [PMID: 19299135]
  28. Nature. 1988 Sep 8;335(6186):142-5 [PMID: 3045565]
  29. Biol Direct. 2009 Sep 02;4:32 [PMID: 19725947]
  30. Nat Rev Microbiol. 2005 Sep;3(9):679-87 [PMID: 16138096]
  31. Microbiology (Reading). 2005 Mar;151(Pt 3):653-663 [PMID: 15758212]
  32. Anaerobe. 2007 Apr;13(2):43-9 [PMID: 17513139]
  33. Environ Microbiol. 2008 Jan;10(1):200-7 [PMID: 17894817]
  34. Ann N Y Acad Sci. 1999 May 18;870:275-89 [PMID: 10415490]
  35. Nucleic Acids Res. 2009 Mar;37(4):1011-34 [PMID: 19213802]
  36. Proc Natl Acad Sci U S A. 2009 Jun 16;106(24):9743-8 [PMID: 19482938]
  37. Endeavour. 2005 Dec;29(4):162-7 [PMID: 16271762]
  38. Science. 2008 Dec 19;322(5909):1843-5 [PMID: 19095942]
  39. BMC Evol Biol. 2008 Jan 24;8:23 [PMID: 18218112]
  40. Genetics. 1992 Aug;131(4):783-9 [PMID: 1516815]
  41. Biol Direct. 2009 Jun 26;4:21 [PMID: 19558678]
  42. Nat Rev Microbiol. 2008 Mar;6(3):181-6 [PMID: 18157154]
  43. Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15736-41 [PMID: 14673098]
  44. Genetics. 1998 Jun;149(2):1163-5 [PMID: 9735004]
  45. Science. 2007 Mar 23;315(5819):1709-12 [PMID: 17379808]
  46. J Exp Zool B Mol Dev Evol. 2009 Nov 15;312(7):667-78 [PMID: 19731234]
  47. Science. 2009 Sep 4;325(5945):1194-5 [PMID: 19729631]
  48. Nature. 1990 Aug 30;346(6287):791 [PMID: 2202904]
  49. Cell. 1981 Jul;25(1):1-2 [PMID: 7023691]
  50. Trends Microbiol. 2004 Sep;12(9):401-4 [PMID: 15337159]
  51. Biol Direct. 2009 Sep 29;4:33 [PMID: 19788730]
  52. Methods Mol Biol. 2009;532:397-411 [PMID: 19271198]
  53. Proc Natl Acad Sci U S A. 2007 May 15;104(20):8403-8 [PMID: 17485671]
  54. Res Microbiol. 2009 Sep;160(7):473-80 [PMID: 19647074]
  55. Annu Rev Cell Dev Biol. 2010;26:557-79 [PMID: 19575656]
  56. Science. 2007 Nov 2;318(5851):761-4 [PMID: 17975059]
  57. Genetics. 1998 Apr;148(4):1453-9 [PMID: 9560365]
  58. Crit Rev Biochem Mol Biol. 2007 Sep-Oct;42(5):373-97 [PMID: 17917873]
  59. Nat Rev Genet. 2001 Sep;2(9):723-9 [PMID: 11533721]
  60. Mol Biol Evol. 2007 Mar;24(3):805-13 [PMID: 17185745]
  61. Genetics. 1991 Aug;128(4):695-701 [PMID: 1916241]
  62. Science. 1993 May 28;260(5112):1221-4 [PMID: 8493560]
  63. RNA. 2008 Dec;14(12):2572-9 [PMID: 18971321]
  64. Trends Microbiol. 2007 Feb;15(2):54-62 [PMID: 17184993]
  65. Nature. 2007 Jan 25;445(7126):369 [PMID: 17251963]
  66. Crit Rev Biochem Mol Biol. 2007 Jul-Aug;42(4):247-58 [PMID: 17687667]
  67. Biol Direct. 2006 Mar 16;1:7 [PMID: 16545108]
  68. Mutat Res. 2005 Jan 6;569(1-2):75-85 [PMID: 15603753]
  69. Science. 2008 Aug 15;321(5891):960-4 [PMID: 18703739]
  70. Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8334-41 [PMID: 11459972]
  71. J Mol Evol. 2005 Feb;60(2):174-82 [PMID: 15791728]
  72. Nucleic Acids Res. 2002 Jan 15;30(2):482-96 [PMID: 11788711]
  73. PLoS Comput Biol. 2005 Nov;1(6):e60 [PMID: 16292354]
  74. Nucleic Acids Res. 2008 Dec;36(21):6688-719 [PMID: 18948295]
  75. Bioessays. 2003 Aug;25(8):815-21 [PMID: 12879453]
  76. Proc Natl Acad Sci U S A. 2009 Apr 28;106(17):7079-82 [PMID: 19357307]
  77. Proc Natl Acad Sci U S A. 2007 May 15;104 Suppl 1:8597-604 [PMID: 17494740]
  78. Proc Natl Acad Sci U S A. 1950 Jun;36(6):344-55 [PMID: 15430309]
  79. Curr Mol Med. 2009 May;9(4):399-400 [PMID: 19519396]
  80. Proc Natl Acad Sci U S A. 1997 Mar 4;94(5):1872-7 [PMID: 9050872]
  81. Trends Biochem Sci. 2009 Aug;34(8):401-7 [PMID: 19646880]
  82. Science. 2003 May 30;300(5624):1404-9 [PMID: 12775833]
  83. EMBO J. 1997 Jun 2;16(11):3303-11 [PMID: 9214645]

Grants

  1. /Intramural NIH HHS

MeSH Term

Biological Evolution
DNA Transposable Elements
Inheritance Patterns
Models, Biological
Mutagenesis
Selection, Genetic
Stress, Physiological

Chemicals

DNA Transposable Elements

Word Cloud

Created with Highcharts 10.0.0LamarckianevolutionacquiredenvironmentanniversaryLamarckbelievedbeneficialphenotypicchangesrandomappearsadaptivelifegenomeevolutionaryquasidefensemobileelementsseemsDNARNAHGTgenesorganismformsmutagenesisenvironmentalDarwinianBACKGROUND:year2009200thpublicationJean-BaptesteLamarck'sPhilosophieZoologique150thCharlesDarwin'sOriginSpeciesdrivenprimarilynon-randomlyparticulardirectlyaffecteduseorgansinheritablecontrastDarwinassignedgreaterimportanceundirectedchangeprovidedmaterialnaturalselectionTHECONCEPT:classicschemeuntenableowingnon-existencemechanismsdirectreverseengineeringcharactersindividualspanHowevervariousphenomenacameforelastyearsseemfitbroadlyinterpretedparadigmprokaryoticCRISPR-CassystemfunctionviabonafidemechanismnamelyintegratingsmallsegmentsviralplasmidspecificlocihostprokaryoteutilizingrespectivetranscriptsdestroycognateelementsimilarprincipleemployedpiRNAbranchinterferenceinvolvedtransposableanimalgermlineHorizontalgenetransferdominantprocessleastprokaryotesforminheritanceratenaturedependrecipientcasestransferredconferselectiveadvantagegrowthmeetingcriteriaVariousstress-inducedtightlyregulatedcompriseuniversalresponsestresscellularStress-inducedcanconstruedquasi-LamarckianphenomenoninducedgenomicalthoughtriggeredfactorsCONCLUSION:modalitiesappearimportantreflectdifferentaspectsinteractionpopulationsor/andLamarckian?

Similar Articles

Cited By