Direct observation of the uncapping of capping protein-capped actin filaments by CARMIL homology domain 3.

Ikuko Fujiwara, Kirsten Remmert, John A Hammer
Author Information
  1. Ikuko Fujiwara: Laboratory of Cell Biology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA.

Abstract

Bulk solution assays have shown that the isolated CARMIL homology 3 (CAH3) domain from mouse and Acanthamoeba CARMIL rapidly and potently restores actin polymerization when added to actin filaments previously capped with capping protein (CP). To demonstrate this putative uncapping activity directly, we used total internal reflection microscopy to observe single, CP-capped actin filaments before and after the addition of the CAH3 domain from mouse CARMIL-1 (mCAH3). The addition of mCAH3 rapidly restored the polymerization of individual capped filaments, consistent with uncapping. To verify uncapping, filaments were capped with recombinant mouse CP tagged with monomeric green fluorescent protein (mGFP-CP). Restoration of polymerization upon the addition of mCAH3 was immediately preceded by the complete dissociation of mGFP-CP from the filament end, confirming the CAH3-driven uncapping mechanism. Quantitative analyses showed that the percentage of capped filaments that uncapped increased as the concentration of mCAH3 was increased, reaching a maximum of approximately 90% at approximately 250 nm mCAH3. Moreover, the time interval between mCAH3 addition and uncapping decreased as the concentration of mCAH3 increased, with the half-time of CP at the barbed end decreasing from approximately 30 min without mCAH3 to approximately 10 s with a saturating amount of mCAH3. Finally, using mCAH3 tagged with mGFP, we obtained direct evidence that the complex of CP and mCAH3 has a small but measurable affinity for the barbed end, as inferred from previous studies and kinetic modeling. We conclude that the isolated CAH3 domain of CARMIL (and presumably the intact molecule as well) possesses the ability to uncap CP-capped actin filaments.

References

  1. Biophys J. 2005 Feb;88(2):1387-402 [PMID: 15556992]
  2. J Biol Chem. 2007 Feb 23;282(8):5871-9 [PMID: 17182619]
  3. Curr Biol. 2003 Sep 2;13(17):1531-7 [PMID: 12956956]
  4. J Muscle Res Cell Motil. 1983 Apr;4(2):253-62 [PMID: 6863518]
  5. J Cell Biol. 1992 Dec;119(5):1151-62 [PMID: 1447293]
  6. J Biol Chem. 2006 Nov 24;281(47):36347-59 [PMID: 16987810]
  7. J Biol Chem. 2006 Oct 13;281(41):31021-30 [PMID: 16895918]
  8. J Cell Biol. 2006 Dec 18;175(6):947-55 [PMID: 17178911]
  9. Cell. 2008 May 30;133(5):841-51 [PMID: 18510928]
  10. Nature. 1999 Oct 7;401(6753):613-6 [PMID: 10524632]
  11. Mol Biol Cell. 1996 Jan;7(1):1-15 [PMID: 8741835]
  12. Biochim Biophys Acta. 1960 Jul 15;41:401-21 [PMID: 14408979]
  13. Gene. 2004 Dec 22;343(2):291-304 [PMID: 15588584]
  14. Trends Biochem Sci. 2004 Aug;29(8):418-28 [PMID: 15362226]
  15. Nature. 1990 Mar 22;344(6264):352-4 [PMID: 2179733]
  16. Annu Rev Biophys Biomol Struct. 2000;29:545-76 [PMID: 10940259]
  17. Nat Cell Biol. 2002 Sep;4(9):666-73 [PMID: 12198494]
  18. Biophys J. 2002 Sep;83(3):1237-58 [PMID: 12202352]
  19. J Cell Biol. 2001 Jun 25;153(7):1479-97 [PMID: 11425877]
  20. J Biol Chem. 2006 Apr 14;281(15):10635-50 [PMID: 16434392]
  21. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3685-90 [PMID: 9108038]
  22. Eur J Biochem. 1980 Apr;105(2):279-87 [PMID: 6991253]
  23. J Cell Biol. 2003 Sep 15;162(6):1079-88 [PMID: 12975351]
  24. Development. 2009 Apr;136(7):1201-10 [PMID: 19244282]
  25. Cell. 2003 Feb 21;112(4):453-65 [PMID: 12600310]
  26. J Cell Biol. 2001 Oct 15;155(2):251-60 [PMID: 11604420]
  27. Anal Biochem. 1974 Nov;62(1):66-74 [PMID: 4473917]
  28. J Biol Chem. 2007 Sep 21;282(38):28014-24 [PMID: 17656356]
  29. J Biol Chem. 2006 Jul 14;281(28):19196-203 [PMID: 16707503]
  30. Dev Cell. 2005 Aug;9(2):209-21 [PMID: 16054028]
  31. J Cell Biol. 2004 Feb 16;164(4):567-80 [PMID: 14769858]
  32. J Biol Chem. 2004 Jan 23;279(4):3068-77 [PMID: 14594951]
  33. Protein Expr Purif. 2009 Oct;67(2):113-9 [PMID: 19427903]
  34. FEBS Lett. 2006 Oct 30;580(25):5863-8 [PMID: 17045265]
  35. Cell. 1995 May 19;81(4):591-600 [PMID: 7758113]
  36. J Cell Biol. 1996 Oct;135(1):169-79 [PMID: 8858171]
  37. Curr Biol. 2007 Mar 6;17(5):395-406 [PMID: 17331727]
  38. Cell. 2004 Aug 6;118(3):363-73 [PMID: 15294161]
  39. Int Rev Cell Mol Biol. 2008;267:183-206 [PMID: 18544499]

MeSH Term

Acanthamoeba
Actin Capping Proteins
Actin Cytoskeleton
Animals
Carrier Proteins
Green Fluorescent Proteins
Mice
Microfilament Proteins
Microscopy
Polymers
Protein Structure, Tertiary
Protozoan Proteins
Rabbits
Recombinant Proteins

Chemicals

Actin Capping Proteins
Carmil1 protein, mouse
Carrier Proteins
Microfilament Proteins
Polymers
Protozoan Proteins
Recombinant Proteins
Green Fluorescent Proteins

Word Cloud

Created with Highcharts 10.0.0mCAH3filamentsuncappingactinCARMILdomaincappedCPadditionapproximatelyCAH3mousepolymerizationendincreasedisolatedhomology3rapidlycappingproteinCP-cappedtaggedmGFP-CPconcentrationbarbedBulksolutionassaysshownAcanthamoebapotentlyrestoresaddedpreviouslydemonstrateputativeactivitydirectlyusedtotalinternalreflectionmicroscopyobservesingleCARMIL-1restoredindividualconsistentverifyrecombinantmonomericgreenfluorescentRestorationuponimmediatelyprecededcompletedissociationfilamentconfirmingCAH3-drivenmechanismQuantitativeanalysesshowedpercentageuncappedreachingmaximum90%250nmMoreovertimeintervaldecreasedhalf-timedecreasing30minwithout10ssaturatingamountFinallyusingmGFPobtaineddirectevidencecomplexsmallmeasurableaffinityinferredpreviousstudieskineticmodelingconcludepresumablyintactmoleculewellpossessesabilityuncapDirectobservationprotein-capped

Similar Articles

Cited By