Empirical Prediction Intervals for County Population Forecasts.

Stefan Rayer, Stanley K Smith, Jeff Tayman
Author Information

Abstract

Population forecasts entail a significant amount of uncertainty, especially for long-range horizons and for places with small or rapidly changing populations. This uncertainty can be dealt with by presenting a range of projections or by developing statistical prediction intervals. The latter can be based on models that incorporate the stochastic nature of the forecasting process, on empirical analyses of past forecast errors, or on a combination of the two. In this article, we develop and test prediction intervals based on empirical analyses of past forecast errors for counties in the United States. Using decennial census data from 1900 to 2000, we apply trend extrapolation techniques to develop a set of county population forecasts; calculate forecast errors by comparing forecasts to subsequent census counts; and use the distribution of errors to construct empirical prediction intervals. We find that empirically-based prediction intervals provide reasonably accurate predictions of the precision of population forecasts, but provide little guidance regarding their tendency to be too high or too low. We believe the construction of empirically-based prediction intervals will help users of small-area population forecasts measure and evaluate the uncertainty inherent in population forecasts and plan more effectively for the future.

References

  1. Eur J Popul. 1998 Mar;14(1):1-17 [PMID: 12159000]
  2. Demography. 1988 Aug;25(3):461-74 [PMID: 3234579]
  3. Math Popul Stud. 1995 Jul;5(3):259-79, 292 [PMID: 12290948]
  4. Demography. 1984 Aug;21(3):383-404 [PMID: 6479397]
  5. J Am Stat Assoc. 1972 Jun;67(338):347-63 [PMID: 12309295]
  6. Int J Forecast. 1992 Nov;8(3):329-38 [PMID: 12157862]
  7. J Am Stat Assoc. 1987 Dec;82(400):991-1,012 [PMID: 12155376]
  8. Int J Forecast. 1992 Nov;8(3):315-27 [PMID: 12157861]
  9. Demography. 2003 Nov;40(4):741-57 [PMID: 14686140]
  10. J Am Stat Assoc. 1983 Mar;78(381):13-20 [PMID: 12265583]
  11. Int J Forecast. 1992 Nov;8(3):495-508 [PMID: 12157868]
  12. J Am Stat Assoc. 1994 Dec;89(428):1,175-89 [PMID: 12155397]
  13. Demography. 1986 Feb;23(1):105-26 [PMID: 3484356]
  14. J Am Stat Assoc. 1990 Sep;85(411):609-16 [PMID: 12155387]

Word Cloud

Created with Highcharts 10.0.0forecastspredictionintervalserrorspopulationuncertaintyempiricalforecastPopulationcanbasedanalysespastdevelopcensusempirically-basedprovideentailsignificantamountespeciallylong-rangehorizonsplacessmallrapidlychangingpopulationsdealtpresentingrangeprojectionsdevelopingstatisticallattermodelsincorporatestochasticnatureforecastingprocesscombinationtwoarticletestcountiesUnitedStatesUsingdecennialdata19002000applytrendextrapolationtechniquessetcountycalculatecomparingsubsequentcountsusedistributionconstructfindreasonablyaccuratepredictionsprecisionlittleguidanceregardingtendencyhighlowbelieveconstructionwillhelpuserssmall-areameasureevaluateinherentplaneffectivelyfutureEmpiricalPredictionIntervalsCountyForecasts

Similar Articles

Cited By