Mixed genotype transmission bodies and virions contribute to the maintenance of diversity in an insect virus.

Gabriel Clavijo, Trevor Williams, Delia Muñoz, Primitivo Caballero, Miguel López-Ferber
Author Information
  1. Gabriel Clavijo: Laboratorio de Entomología Agrícola y Patología de Insectos, Departamento de Producción Agraria, Universidad Pública de Navarra, Pamplona, Spain.

Abstract

An insect nucleopolyhedrovirus naturally survives as a mixture of at least nine genotypes. infection by multiple genotypes results in the production of virus occlusion bodies (OBs) with greater pathogenicity than those of any genotype alone. We tested the hypothesis that each OB contains a genotypically diverse population of virions. Few insects died following inoculation with an experimental two-genotype mixture at a dose of one OB per insect, but a high proportion of multiple infections were observed (50%), which differed significantly from the frequencies predicted by a non-associated transmission model in which genotypes are segregated into distinct OBs. By contrast, insects that consumed multiple OBs experienced higher mortality and infection frequencies did not differ significantly from those of the non-associated model. Inoculation with genotypically complex wild-type OBs indicated that genotypes tend to be transmitted in association, rather than as independent entities, irrespective of dose. To examine the hypothesis that virions may themselves be genotypically heterogeneous, cell culture plaques derived from individual virions were analysed to reveal that one-third of virions was of mixed genotype, irrespective of the genotypic composition of the OBs. We conclude that co-occlusion of genotypically distinct virions in each OB is an adaptive mechanism that favours the maintenance of virus diversity during insect-to-insect transmission.

References

  1. Proc Natl Acad Sci U S A. 2005 Mar 22;102(12):4448-52 [PMID: 15767582]
  2. Mol Ecol. 2003 Apr;12(4):881-90 [PMID: 12753209]
  3. J Invertebr Pathol. 2005 Jun;89(2):101-11 [PMID: 15876438]
  4. Proc Biol Sci. 2006 Apr 7;273(1588):783-90 [PMID: 16618670]
  5. Science. 2001 May 11;292(5519):1099-102 [PMID: 11352063]
  6. J Gen Virol. 2005 Aug;86(Pt 8):2175-2183 [PMID: 16033965]
  7. Appl Environ Microbiol. 2005 Aug;71(8):4254-62 [PMID: 16085811]
  8. Can J Microbiol. 2006 Mar;52(3):266-71 [PMID: 16604123]
  9. J Invertebr Pathol. 2007 Mar;94(3):153-62 [PMID: 17125790]
  10. J Gen Virol. 2005 Oct;86(Pt 10):2731-2738 [PMID: 16186226]
  11. J Virol. 2002 May;76(10):4750-63 [PMID: 11967292]
  12. Appl Environ Microbiol. 2004 Sep;70(9):5579-88 [PMID: 15345446]
  13. Arch Virol. 2003 Jul;148(7):1317-33 [PMID: 12827463]
  14. Proc Biol Sci. 2003 Nov 7;270(1530):2249-55 [PMID: 14613611]
  15. J Virol. 2001 Sep;75(17):8298-305 [PMID: 11483775]
  16. Nature. 1999 Apr 1;398(6726):441-3 [PMID: 10201376]
  17. Emerg Infect Dis. 1998 Oct-Dec;4(4):521-7 [PMID: 9866728]
  18. Epidemiol Infect. 1997 Feb;118(1):43-50 [PMID: 9042034]
  19. J Invertebr Pathol. 2004 Sep;87(1):29-38 [PMID: 15491596]
  20. J Gen Virol. 2009 Mar;90(Pt 3):662-671 [PMID: 19218212]
  21. J Virol. 2005 Aug;79(15):9492-502 [PMID: 16014912]
  22. Phytopathology. 1998 Nov;88(11):1174-8 [PMID: 18944850]
  23. J Virol. 2009 May;83(10):5127-36 [PMID: 19264787]
  24. Appl Environ Microbiol. 2001 Nov;67(11):5204-9 [PMID: 11679346]
  25. J Evol Biol. 2004 Sep;17(5):1018-25 [PMID: 15312074]
  26. Trends Microbiol. 2002 Sep;10(9):401-5 [PMID: 12217504]
  27. Appl Environ Microbiol. 1990 Oct;56(10):3057-62 [PMID: 16348313]
  28. Proc Biol Sci. 2009 Jun 22;276(1665):2233-42 [PMID: 19324752]
  29. J Virol. 2003 Feb;77(4):2701-8 [PMID: 12552010]
  30. Proc Biol Sci. 2003 Jan 22;270(1511):189-93 [PMID: 12590759]
  31. J Virol. 1973 Sep;12(3):523-33 [PMID: 4127030]
  32. J Econ Entomol. 1999 Oct;92(5):1079-85 [PMID: 10582046]
  33. J Theor Biol. 2000 Sep 21;206(2):279-90 [PMID: 10966764]
  34. J Virol. 1988 Aug;62(8):3037-9 [PMID: 2839719]
  35. J Virol. 2005 Apr;79(7):4340-6 [PMID: 15767434]
  36. Am Nat. 2008 Aug;172(2):E67-79 [PMID: 18582168]
  37. Annu Rev Entomol. 1999;44:257-89 [PMID: 15012374]

MeSH Term

Animals
DNA, Viral
Genetic Variation
Genotype
Host-Pathogen Interactions
Nucleopolyhedroviruses
Polymerase Chain Reaction
Spodoptera
Virion

Chemicals

DNA, Viral

Word Cloud

Created with Highcharts 10.0.0virionsOBsgenotypesgenotypicallyinsectmultiplevirusgenotypeOBtransmissionmixturebodieshypothesisinsectsdosesignificantlyfrequenciesnon-associatedmodeldistinctirrespectivemaintenancediversitynucleopolyhedrovirusnaturallysurvivesleastnineInfectionresultsproductionocclusiongreaterpathogenicityalonetestedcontainsdiversepopulationdiedfollowinginoculationexperimentaltwo-genotypeoneperhighproportioninfectionsobserved50%differedpredictedsegregatedcontrastconsumedexperiencedhighermortalityinfectiondifferInoculationcomplexwild-typeindicatedtendtransmittedassociationratherindependententitiesexaminemayheterogeneouscellcultureplaquesderivedindividualanalysedrevealone-thirdmixedgenotypiccompositionconcludeco-occlusionadaptivemechanismfavoursinsect-to-insectMixedcontribute

Similar Articles

Cited By (35)