Zebrafish models for human FKRP muscular dystrophies.

Genri Kawahara, Jeffrey R Guyon, Yukio Nakamura, Louis M Kunkel
Author Information
  1. Genri Kawahara: Division of Genetics, Program in Genetics, Harvard Medical School, Children's Hospital, Boston, MA, USA.

Abstract

Various muscular dystrophies are associated with the defective glycosylation of alpha-dystroglycan and are known to result from mutations in genes encoding glycosyltransferases. Fukutin-related protein (FKRP) was identified as a homolog of fukutin, the defective protein in Fukuyama-type congenital muscular dystrophy (FCMD), that is thought to function as a glycosyltransferase. Mutations in FKRP have been linked to a variety of phenotypes including Walker-Warburg syndrome (WWS), limb girdle muscular dystrophy (LGMD) 2I and congenital muscular dystrophy 1C (MDC1C). Zebrafish are a useful animal model to reveal the mechanism of these diseases caused by mutations in FKRP gene. Downregulating FKRP expression in zebrafish by two different morpholinos resulted in embryos which had developmental defects similar to those observed in human muscular dystrophies associated with mutations in FKRP. The FKRP morphants showed phenotypes involving alterations in somitic structure and muscle fiber organization, as well as defects in developing eye morphology. Additionally, they were found to have a reduction in alpha-dystroglycan glycosylation and a shortened myofiber length. Moreover, co-injection of fish or human FKRP mRNA along with the morpholino restored normal development, alpha-dystroglycan glycosylation and laminin binding activity of alpha-dystroglycan in the morphants. Co-injection of the human FKRP mRNA containing causative mutations found in human patients of WWS, MDC1C and LGMD2I could not restore their phenotypes significantly. Interestingly, these morphant fish having human FKRP mutations showed a wide phenotypic range similar to that seen in humans.

References

  1. J Med Genet. 2005 Dec;42(12):907-12 [PMID: 15894594]
  2. Hum Mol Genet. 2003 Oct 15;12 Spec No 2:R265-70 [PMID: 14504264]
  3. J Cell Biol. 2001 Jul 23;154(2):435-45 [PMID: 11470830]
  4. Nature. 1998 Jul 23;394(6691):388-92 [PMID: 9690476]
  5. J Med Genet. 2004 May;41(5):e61 [PMID: 15121789]
  6. Semin Pediatr Neurol. 2006 Jun;13(2):104-14 [PMID: 17027860]
  7. Hum Mol Genet. 2002 Oct 1;11(21):2673-87 [PMID: 12354792]
  8. Cell. 1994 Jun 3;77(5):663-74 [PMID: 8205616]
  9. Hum Mol Genet. 2003 Mar 15;12(6):601-15 [PMID: 12620966]
  10. BMC Genomics. 2007 Mar 20;8:79 [PMID: 17374169]
  11. Hum Mol Genet. 2001 Dec 1;10(25):2851-9 [PMID: 11741828]
  12. Clin Genet. 2005 Apr;67(4):281-9 [PMID: 15733261]
  13. Neuromuscul Disord. 2005 May;15(5):372-6 [PMID: 15833432]
  14. Neurogenetics. 2004 Feb;5(1):27-34 [PMID: 14652796]
  15. Am J Hum Genet. 2002 Nov;71(5):1033-43 [PMID: 12369018]
  16. Ann Neurol. 2004 Nov;56(5):738-41 [PMID: 15505776]
  17. Dev Cell. 2001 Nov;1(5):717-24 [PMID: 11709191]
  18. Proc Natl Acad Sci U S A. 2007 Apr 24;104(17):7092-7 [PMID: 17438294]
  19. J Cell Sci. 2006 Jan 15;119(Pt 2):199-207 [PMID: 16410545]
  20. Curr Biol. 1999 Nov 18;9(22):R836-7 [PMID: 10574772]
  21. Am J Hum Genet. 2001 Dec;69(6):1198-209 [PMID: 11592034]
  22. Ann Neurol. 2003 Apr;53(4):537-42 [PMID: 12666124]
  23. Neuromuscul Disord. 2005 Mar;15(3):207-17 [PMID: 15725582]
  24. Biochim Biophys Acta. 2007 Feb;1772(2):205-15 [PMID: 16934958]
  25. Exp Cell Res. 2005 Mar 10;304(1):105-15 [PMID: 15707578]
  26. J Hum Genet. 2006;51(5):397-406 [PMID: 16583129]
  27. Genomics. 2008 Sep;92(3):159-67 [PMID: 18632251]
  28. Development. 2002 Jul;129(14):3505-12 [PMID: 12091319]
  29. Hum Mol Genet. 2009 Jan 1;18(1):202-11 [PMID: 18957474]
  30. Brain. 2008 Jun;131(Pt 6):1551-61 [PMID: 18477595]
  31. Dev Dyn. 1995 Jul;203(3):253-310 [PMID: 8589427]
  32. Development. 2003 Dec;130(23):5851-60 [PMID: 14573513]
  33. Neurology. 2003 Apr 22;60(8):1246-51 [PMID: 12707425]
  34. Proc Natl Acad Sci U S A. 2004 Sep 28;101(39):14126-31 [PMID: 15383666]
  35. Nature. 2002 Jul 25;418(6896):417-22 [PMID: 12140558]
  36. Nature. 1992 Feb 20;355(6362):696-702 [PMID: 1741056]
  37. J Neurol. 2006 Oct;253(10):1317-22 [PMID: 16786213]
  38. Hum Mol Genet. 1997 Jun;6(6):831-41 [PMID: 9175728]
  39. Nat Genet. 2001 Jun;28(2):151-4 [PMID: 11381262]
  40. J Cell Biol. 1993 Aug;122(4):809-23 [PMID: 8349731]
  41. Ann Neurol. 2006 May;59(5):808-15 [PMID: 16634037]
  42. Development. 1996 Dec;123:399-413 [PMID: 9007258]
  43. Arch Neurol. 2006 Feb;63(2):251-7 [PMID: 16476814]

Grants

  1. 5P30HD018655-26/NICHD NIH HHS
  2. /Howard Hughes Medical Institute
  3. P50 NS040828/NINDS NIH HHS
  4. P30 HD018655/NICHD NIH HHS
  5. 5P50NS040828-07/NINDS NIH HHS

MeSH Term

Animals
Disease Models, Animal
Dystroglycans
Eye
Gene Expression Regulation
Glycosylation
Glycosyltransferases
Humans
Laminin
Muscle, Skeletal
Muscular Dystrophies
Pentosyltransferases
Protein Binding
Proteins
Zebrafish
Zebrafish Proteins

Chemicals

Laminin
Proteins
Zebrafish Proteins
Dystroglycans
FKRP protein, zebrafish
Glycosyltransferases
FKRP protein, human
Pentosyltransferases

Word Cloud

Created with Highcharts 10.0.0FKRPmuscularhumanmutationsalpha-dystroglycandystrophiesglycosylationdystrophyphenotypesassociateddefectiveproteincongenitalWWSMDC1CZebrafishdefectssimilarmorphantsshowedfoundfishmRNAVariousknownresultgenesencodingglycosyltransferasesFukutin-relatedidentifiedhomologfukutinFukuyama-typeFCMDthoughtfunctionglycosyltransferaseMutationslinkedvarietyincludingWalker-WarburgsyndromelimbgirdleLGMD2I1CusefulanimalmodelrevealmechanismdiseasescausedgeneDownregulatingexpressionzebrafishtwodifferentmorpholinosresultedembryosdevelopmentalobservedinvolvingalterationssomiticstructuremusclefiberorganizationwelldevelopingeyemorphologyAdditionallyreductionshortenedmyofiberlengthMoreoverco-injectionalongmorpholinorestorednormaldevelopmentlamininbindingactivityCo-injectioncontainingcausativepatientsLGMD2IrestoresignificantlyInterestinglymorphantwidephenotypicrangeseenhumansmodels

Similar Articles

Cited By