The structure of the proline utilization a proline dehydrogenase domain inactivated by N-propargylglycine provides insight into conformational changes induced by substrate binding and flavin reduction.

Dhiraj Srivastava, Weidong Zhu, William H Johnson, Christian P Whitman, Donald F Becker, John J Tanner
Author Information
  1. Dhiraj Srivastava: Department of Chemistry, University of Missouri, Columbia, Missouri 65211, USA.

Abstract

Proline utilization A (PutA) from Escherichia coli is a flavoprotein that has mutually exclusive roles as a transcriptional repressor of the put regulon and a membrane-associated enzyme that catalyzes the oxidation of proline to glutamate. Previous studies have shown that the binding of proline in the proline dehydrogenase (PRODH) active site and subsequent reduction of the FAD trigger global conformational changes that enhance PutA-membrane affinity. These events cause PutA to switch from its repressor to its enzymatic role, but the mechanism by which this signal is propagated from the active site to the distal membrane-binding domain is largely unknown. Here, it is shown that N-propargylglycine irreversibly inactivates PutA by covalently linking the flavin N(5) atom to the epsilon-amino of Lys329. Furthermore, inactivation locks PutA into a conformation that may mimic the proline-reduced, membrane-associated form. The 2.15 A resolution structure of the inactivated PRODH domain suggests that the initial events involved in broadcasting the reduced flavin state to the distal membrane-binding domain include major reorganization of the flavin ribityl chain, severe (35 degrees ) butterfly bending of the isoalloxazine ring, and disruption of an electrostatic network involving the flavin N(5) atom, Arg431, and Asp370. The structure also provides information about conformational changes associated with substrate binding. This analysis suggests that the active site is incompletely assembled in the absence of the substrate, and the binding of proline draws together conserved residues in helix 8 and the beta1-alphal loop to complete the active site.

Associated Data

PDB | 3ITG

References

  1. Biochemistry. 2003 May 13;42(18):5469-77 [PMID: 12731889]
  2. J Biol Chem. 1993 Apr 25;268(12):8972-9 [PMID: 8473341]
  3. Biochim Biophys Acta. 1993 Sep 3;1202(1):77-81 [PMID: 8373828]
  4. Proteins. 2003 Feb 15;50(3):437-50 [PMID: 12557186]
  5. Eur J Biochem. 1983 Jul 15;134(1):77-82 [PMID: 6305659]
  6. Methods Mol Biol. 2008;426:419-35 [PMID: 18542881]
  7. J Mol Biol. 2008 Aug 1;381(1):174-88 [PMID: 18586269]
  8. Methods Enzymol. 1995;249:240-83 [PMID: 7791614]
  9. Nat Struct Biol. 2003 Feb;10(2):109-14 [PMID: 12514740]
  10. Biochemistry. 2008 May 20;47(20):5573-80 [PMID: 18426222]
  11. J Mol Biol. 1968 Apr 28;33(2):491-7 [PMID: 5700707]
  12. J Biol Chem. 1992 Jun 25;267(18):13086-92 [PMID: 1618807]
  13. Biochemistry. 2004 Oct 5;43(39):12539-48 [PMID: 15449943]
  14. Acta Crystallogr D Biol Crystallogr. 2000 Dec;56(Pt 12):1622-4 [PMID: 11092928]
  15. J Biol Chem. 1962 Oct;237:3245-9 [PMID: 14033211]
  16. J Biol Chem. 1981 Sep 25;256(18):9762-6 [PMID: 6270101]
  17. Biochemistry. 2005 Sep 20;44(37):12297-306 [PMID: 16156643]
  18. Biochemistry. 2009 Feb 10;48(5):951-9 [PMID: 19140736]
  19. Acta Crystallogr D Biol Crystallogr. 2006 Jan;62(Pt 1):72-82 [PMID: 16369096]
  20. Amino Acids. 2008 Nov;35(4):719-30 [PMID: 18369526]
  21. Biochemistry. 2007 Jan 16;46(2):483-91 [PMID: 17209558]
  22. Proc Natl Acad Sci U S A. 1987 Jan;84(2):373-7 [PMID: 3540963]
  23. J Biol Chem. 2007 May 11;282(19):14316-27 [PMID: 17344208]
  24. Acta Crystallogr D Biol Crystallogr. 2001 Dec;57(Pt 12):1925-7 [PMID: 11717519]
  25. Biochemistry. 2004 Oct 19;43(41):13165-74 [PMID: 15476410]
  26. Methods Mol Biol. 1999;131:1-7 [PMID: 10494538]
  27. Acta Crystallogr D Biol Crystallogr. 2003 Jul;59(Pt 7):1131-7 [PMID: 12832755]
  28. Amino Acids. 2008 Nov;35(4):711-8 [PMID: 18324349]
  29. Acta Crystallogr D Biol Crystallogr. 2006 Jan;62(Pt 1):48-57 [PMID: 16369093]
  30. Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32 [PMID: 15572765]

Grants

  1. GM065546/NIGMS NIH HHS
  2. P20 RR-017675-02/NCRR NIH HHS
  3. P20 RR017675/NCRR NIH HHS
  4. R01 GM065546/NIGMS NIH HHS
  5. GM041239/NIGMS NIH HHS
  6. R01 GM061068/NIGMS NIH HHS
  7. R01 GM041239/NIGMS NIH HHS
  8. GM061068/NIGMS NIH HHS

MeSH Term

Alkynes
Binding Sites
Catalytic Domain
Crystallography, X-Ray
Escherichia coli
Escherichia coli Proteins
Flavins
Glycine
Models, Molecular
Oxidation-Reduction
Proline
Proline Oxidase
Protein Conformation
Substrate Specificity

Chemicals

Alkynes
Escherichia coli Proteins
Flavins
propargylglycine
Proline
Proline Oxidase
Glycine

Word Cloud

Created with Highcharts 10.0.0prolineflavinPutAbindingactivesitedomainconformationalchangesstructuresubstrateutilizationrepressormembrane-associatedshowndehydrogenasePRODHreductioneventsdistalmembrane-bindingN-propargylglycineN5atominactivatedsuggestsprovidesProlineEscherichiacoliflavoproteinmutuallyexclusiverolestranscriptionalputregulonenzymecatalyzesoxidationglutamatePreviousstudiessubsequentFADtriggerglobalenhancePutA-membraneaffinitycauseswitchenzymaticrolemechanismsignalpropagatedlargelyunknownirreversiblyinactivatescovalentlylinkingepsilon-aminoLys329Furthermoreinactivationlocksconformationmaymimicproline-reducedform215resolutioninitialinvolvedbroadcastingreducedstateincludemajorreorganizationribitylchainsevere35degreesbutterflybendingisoalloxazineringdisruptionelectrostaticnetworkinvolvingArg431Asp370alsoinformationassociatedanalysisincompletelyassembledabsencedrawstogetherconservedresidueshelix8beta1-alphalloopcompleteinsightinduced

Similar Articles

Cited By