High heterogeneity within methicillin-resistant Staphylococcus aureus ST398 isolates, defined by Cfr9I macrorestriction-pulsed-field gel electrophoresis profiles and spa and SCCmec types.

M A Argudín, A Fetsch, B-A Tenhagen, J A Hammerl, S Hertwig, J Kowall, M R Rodicio, A Käsbohrer, R Helmuth, A Schroeter, M C Mendoza, J Bräunig, B Appel, B Guerra
Author Information
  1. M A Argudín: Departmento de Biología Funcional (Area de Microbiología), University of Oviedo, Julían Clavería 6, E-33006 Oviedo, Spain,

Abstract

During recent years, the animal-associated methicillin-resistant Staphylococcus aureus clone ST398 has extensively been studied. The DNA of these isolates turned out to be refractory to SmaI restriction, and consequently, SmaI is unsuitable for subtyping this clone by standard pulsed-field gel electrophoresis (PFGE). Very recently, ST398 DNA was shown to be digested by Cfr9I, a neoschizomer of SmaI. In the present study, we employed Cfr9I PFGE on 100 German and 5 Dutch ST398 isolates and compared their PFGE profiles, protein A gene variable repeat regions (spa types), and types of the staphylococcal cassette chromosome mec (SCCmec). The isolates (from healthy carrier pigs, clinical samples from pigs, dust from farms, milk, and meat) were assigned to 35 profiles, which were correlated to the SCCmec type. A dendrogram with the Cfr9I patterns assigned all profiles to two clusters. Cluster A grouped nearly all isolates with SCCmec type V, and cluster B comprised all SCCmec type IVa and V* (a type V variant first identified as III) carriers plus one isolate with SCCmec type V. Both clusters also grouped methicillin-susceptible S. aureus isolates. The association of the majority of isolates with SCCmec type V in one large cluster indicated the presence of a successful subclone within the clonal complex CC398 from pigs, which has diversified. In general, the combination of Cfr9I PFGE with spa and SCCmec typing demonstrated the heterogeneity of the series analyzed and can be further used for outbreak investigations and traceability studies of the MRSA ST398 emerging clone.

References

  1. J Antimicrob Chemother. 2009 Dec;64(6):1156-64 [PMID: 19808235]
  2. Emerg Infect Dis. 2008 Mar;14(3):479-83 [PMID: 18325267]
  3. Dtsch Tierarztl Wochenschr. 2008 Apr;115(4):132-9 [PMID: 18500146]
  4. J Clin Microbiol. 2006 Jul;44(7):2524-32 [PMID: 16825375]
  5. J Antimicrob Chemother. 2008 Dec;62(6):1181-7 [PMID: 18819971]
  6. J Clin Microbiol. 2009 Oct;47(10):3313-22 [PMID: 19710273]
  7. Lett Appl Microbiol. 2010 Jan;50(1):127-30 [PMID: 19843206]
  8. Clin Microbiol Infect. 2006 Jun;12(6):513-8 [PMID: 16700698]
  9. Emerg Infect Dis. 2007 Dec;13(12):1834-9 [PMID: 18258032]
  10. Vet Microbiol. 2007 Jun 21;122(3-4):366-72 [PMID: 17367960]
  11. PLoS One. 2009;4(1):e4258 [PMID: 19145257]
  12. J Clin Microbiol. 2001 Nov;39(11):4190-2 [PMID: 11682558]
  13. J Clin Microbiol. 2006 May;44(5):1875-6 [PMID: 16672428]
  14. J Clin Microbiol. 2000 Mar;38(3):1008-15 [PMID: 10698988]
  15. Antimicrob Agents Chemother. 2009 Dec;53(12):4961-7 [PMID: 19721075]
  16. Infect Genet Evol. 2008 Dec;8(6):747-63 [PMID: 18718557]
  17. Antimicrob Agents Chemother. 2004 Jul;48(7):2637-51 [PMID: 15215121]
  18. Emerg Infect Dis. 2007 Feb;13(2):255-8 [PMID: 17479888]
  19. Antimicrob Agents Chemother. 2001 May;45(5):1323-36 [PMID: 11302791]
  20. Vet Rec. 2009 Nov 14;165(20):589-93 [PMID: 19915190]
  21. Emerg Infect Dis. 2009 Jan;15(1):136-7; author reply 136-7 [PMID: 19116081]
  22. Antimicrob Agents Chemother. 2006 Oct;50(10):3237-44 [PMID: 17005800]
  23. Clin Microbiol Infect. 2008 Jun;14(6):519-21 [PMID: 18325034]
  24. Eur J Clin Microbiol Infect Dis. 2010 Jan;29(1):119-22 [PMID: 19795142]
  25. J Clin Microbiol. 1999 Nov;37(11):3556-63 [PMID: 10523551]
  26. Clin Microbiol Infect. 1996 Aug;2(1):2-11 [PMID: 11866804]
  27. Int J Food Microbiol. 2009 Aug 31;134(1-2):52-6 [PMID: 19144432]
  28. Euro Surveill. 2009 Sep 24;14(38): [PMID: 19814956]
  29. J Clin Microbiol. 2002 Dec;40(12):4544-6 [PMID: 12454149]
  30. Vet Microbiol. 2007 Jun 21;122(3-4):384-6 [PMID: 17467199]
  31. Emerg Infect Dis. 2009 Feb;15(2):285-7 [PMID: 19193274]
  32. Euro Surveill. 2009 Jan 08;14(1): [PMID: 19161710]
  33. J Clin Microbiol. 2003 Apr;41(4):1574-85 [PMID: 12682148]
  34. J Clin Microbiol. 1988 Nov;26(11):2465-6 [PMID: 3069867]
  35. Emerg Infect Dis. 2005 Dec;11(12):1965-6 [PMID: 16485492]
  36. J Clin Microbiol. 2005 Oct;43(10):5026-33 [PMID: 16207957]
  37. J Antimicrob Chemother. 2003 Feb;51(2):419-21 [PMID: 12562714]
  38. BMC Microbiol. 2007 Oct 29;7:98 [PMID: 17967176]

MeSH Term

Anti-Bacterial Agents
Bacterial Proteins
Bacterial Typing Techniques
Colony Count, Microbial
Conjugation, Genetic
DNA Fingerprinting
DNA, Bacterial
Deoxyribonucleases, Type II Site-Specific
Electrophoresis, Gel, Pulsed-Field
Genes, Bacterial
Genotype
Methicillin-Resistant Staphylococcus aureus
Microbial Sensitivity Tests
Sequence Analysis, DNA
Serotyping
Tandem Repeat Sequences
Virulence Factors

Chemicals

Anti-Bacterial Agents
Bacterial Proteins
DNA, Bacterial
Virulence Factors
CCCGGG-specific type II deoxyribonucleases
Deoxyribonucleases, Type II Site-Specific

Word Cloud

Created with Highcharts 10.0.0SCCmecisolatestypeST398Cfr9IPFGEprofilesVaureuscloneSmaIspatypespigsmethicillin-resistantStaphylococcusDNAgelelectrophoresisassignedclustersgroupedclusteronewithinheterogeneityrecentyearsanimal-associatedextensivelystudiedturnedrefractoryrestrictionconsequentlyunsuitablesubtypingstandardpulsed-fieldrecentlyshowndigestedneoschizomerpresentstudyemployed100German5Dutchcomparedproteingenevariablerepeatregionsstaphylococcalcassettechromosomemechealthycarrierclinicalsamplesdustfarmsmilkmeat35correlateddendrogrampatternstwoClusternearlyBcomprisedIVaV*variantfirstidentifiedIIIcarriersplusisolatealsomethicillin-susceptibleSassociationmajoritylargeindicatedpresencesuccessfulsubcloneclonalcomplexCC398diversifiedgeneralcombinationtypingdemonstratedseriesanalyzedcanusedoutbreakinvestigationstraceabilitystudiesMRSAemergingHighdefinedmacrorestriction-pulsed-field

Similar Articles

Cited By