Summer heat and mortality in New York City: how hot is too hot?

Kristina B Metzger, Kazuhiko Ito, Thomas D Matte
Author Information
  1. Kristina B Metzger: Bureau of Environmental Surveillance and Policy, New York City Department of Health and Mental Hygiene, New York, New York 10007, USA.

Abstract

BACKGROUND: To assess the public health risk of heat waves and to set criteria for alerts for -excessive heat, various meteorologic metrics and models are used in different jurisdictions, generally without systematic comparisons of alternatives. We report such an analysis for New York City that compared maximum heat index with alternative metrics in models to predict daily variation in warm-season natural-cause mortality from 1997 through 2006.
MATERIALS AND METHODS: We used Poisson time-series generalized linear models and generalized additive models to estimate weather-mortality relationships using various metrics, lag and averaging times, and functional forms and compared model fit.
RESULTS: A model that included cubic functions of maximum heat index on the same and each of the previous 3 days provided the best fit, better than models using maximum, minimum, or average temperature, or spatial synoptic classification (SSC) of weather type. We found that goodness of fit and maximum heat index-mortality functions were similar using parametric and nonparametric models. Same-day maximum heat index was linearly related to mortality risk across its range. The slopes at lags of 1, 2, and 3 days were flat across moderate values but increased sharply between maximum heat index of 95 degrees F and 100 degrees F (35-38 degrees C). SSC or other meteorologic variables added to the maximum heat index model moderately improved goodness of fit, with slightly attenuated maximum heat index-mortality functions.
CONCLUSIONS: In New York City, maximum heat index performed similarly to alternative and more complex metrics in estimating mortality risk during hot weather. The linear relationship supports issuing heat alerts in New York City when the heat index is forecast to exceed approximately 95-100 degrees F. Periodic city-specific analyses using recent data are recommended to evaluate public health risks from extreme heat.

References

  1. N Engl J Med. 1996 Jul 11;335(2):84-90 [PMID: 8649494]
  2. Environ Health Perspect. 2001 May;109(5):463-70 [PMID: 11401757]
  3. Stat Med. 2006 Dec 30;25(24):4164-78 [PMID: 16991105]
  4. Environ Health Perspect. 2003 Nov;111(14):1712-8 [PMID: 14594620]
  5. Lancet. 2006 Mar 11;367(9513):859-69 [PMID: 16530580]
  6. J Epidemiol Community Health. 2002 May;56(5):367-72 [PMID: 11964434]
  7. Epidemiol Rev. 2002;24(2):190-202 [PMID: 12762092]
  8. Arch Environ Health. 1975 Mar;30(3):130-6 [PMID: 1115538]
  9. Arch Intern Med. 2007 Nov 12;167(20):2170-6 [PMID: 17698676]
  10. Chest. 2005 Oct;128(4):2190-4 [PMID: 16236873]
  11. MMWR Morb Mortal Wkly Rep. 2008 Jun 27;57(25):692-7 [PMID: 18583957]
  12. J Epidemiol Community Health. 2006 May;60(5):417-23 [PMID: 16614332]
  13. Am J Epidemiol. 2006 Jul 1;164(1):77-84 [PMID: 16624968]
  14. Int J Biometeorol. 2007 Jan;51(3):193-200 [PMID: 17039379]
  15. Natl Vital Stat Rep. 2008 Apr 24;56(10):1-120 [PMID: 18512336]
  16. Epidemiology. 2000 May;11(3):320-6 [PMID: 10784251]
  17. J Infect Dis. 2000 May;181 Suppl 2:S284-7 [PMID: 10804139]
  18. Environ Res. 1998 Apr;77(1):9-19 [PMID: 9593623]
  19. Am J Epidemiol. 2002 Jan 1;155(1):80-7 [PMID: 11772788]
  20. Epidemiology. 2008 Jul;19(4):563-70 [PMID: 18467963]
  21. Environ Res. 1972 Mar;5(1):85-92 [PMID: 5032927]
  22. Epidemiology. 2009 Mar;20(2):205-13 [PMID: 19194300]
  23. J Expo Sci Environ Epidemiol. 2007 Dec;17 Suppl 2:S45-60 [PMID: 18079764]
  24. Soc Sci Med. 2006 Dec;63(11):2847-63 [PMID: 16996668]
  25. Environ Res. 2008 Nov;108(3):361-9 [PMID: 18774130]
  26. Epidemiology. 2006 Nov;17(6):632-8 [PMID: 17003686]
  27. Am J Cardiol. 2005 Jul 1;96(1):45-51 [PMID: 15979431]
  28. Ulster Med J. 2005 Sep;74(2):113-21 [PMID: 16235764]
  29. Int J Epidemiol. 2008 Oct;37(5):1121-31 [PMID: 18522981]
  30. MMWR Morb Mortal Wkly Rep. 2005 Jul 1;54(25):628-30 [PMID: 15988407]
  31. Soc Sci Med. 1998 Dec;47(11):1809-24 [PMID: 9877350]
  32. Epidemiology. 2006 Nov;17(6):624-31 [PMID: 17028505]

Grants

  1. P30 ES000260/NIEHS NIH HHS
  2. ES00260/NIEHS NIH HHS

MeSH Term

Forecasting
Heat Stroke
Hot Temperature
Humans
Linear Models
Models, Statistical
New York City
Nonlinear Dynamics
Public Health
Risk Factors
Seasons
Statistics, Nonparametric
Weather

Word Cloud

Created with Highcharts 10.0.0heatmaximumindexmodelsmetricsNewYorkmortalityusingfitdegreesriskCitymodelfunctionsFpublichealthalertsvariousmeteorologicusedcomparedalternativegeneralizedlinear3daysSSCweathergoodnessindex-mortalityacrosshotBACKGROUND:assesswavessetcriteria-excessivedifferentjurisdictionsgenerallywithoutsystematiccomparisonsalternativesreportanalysispredictdailyvariationwarm-seasonnatural-cause19972006MATERIALSANDMETHODS:Poissontime-seriesadditiveestimateweather-mortalityrelationshipslagaveragingtimesfunctionalformsRESULTS:includedcubicpreviousprovidedbestbetterminimumaveragetemperaturespatialsynopticclassificationtypefoundsimilarparametricnonparametricSame-daylinearlyrelatedrangeslopeslags12flatmoderatevaluesincreasedsharply9510035-38CvariablesaddedmoderatelyimprovedslightlyattenuatedCONCLUSIONS:performedsimilarlycomplexestimatingrelationshipsupportsissuingforecastexceedapproximately95-100Periodiccity-specificanalysesrecentdatarecommendedevaluaterisksextremeSummerCity:hot?

Similar Articles

Cited By (51)