Deficiency of phosphoinositide 3-kinase enhancer protects mice from diet-induced obesity and insulin resistance.

Chi Bun Chan, Xia Liu, Dae Young Jung, John Y Jun, Hongbo R Luo, Jason K Kim, Keqiang Ye
Author Information
  1. Chi Bun Chan: Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA.

Abstract

OBJECTIVE: Phosphoinositide 3-kinase enhancer A (PIKE-A) is a proto-oncogene that promotes tumor growth and transformation by enhancing Akt activity. However, the physiological functions of PIKE-A in peripheral tissues are unknown. Here, we describe the effect of PIKE deletion in mice and explore the role of PIKE-A in obesity development.
RESEARCH DESIGN AND METHODS: Whole-body PIKE knockout mice were generated and subjected to high-fat-diet feeding for 20 weeks. The glucose tolerance, tissue-specific insulin sensitivity, adipocyte differentiation, and lipid oxidation status were determined. The molecular mechanism of PIKE in the insulin signaling pathway was also studied.
RESULTS: We show that PIKE-A regulates obesity development by modulating AMP-activated protein kinase (AMPK) phosphorylation. PIKE-A is important for insulin to suppress AMPK phosphorylation. The expression of PIKE-A is markedly increased in adipose tissue of obese mice, whereas depletion of PIKE-A inhibits adipocyte differentiation. PIKE knockout mice exhibit a prominent phenotype of lipoatrophy and are resistant to high-fat diet-induced obesity, liver steatosis, and diabetes. PIKE knockout mice also have augmented lipid oxidation, which is accompanied by enhanced AMPK phosphorylation in both muscle and adipose tissue. Moreover, insulin sensitivity is improved in PIKE-A-deficient muscle and fat, thus protecting the animals from diet-induced diabetes.
CONCLUSIONS: Our results suggest that PIKE-A is implicated in obesity and associated diabetes development by negatively regulating AMPK activity.

References

  1. Am J Physiol Cell Physiol. 2007 Jan;292(1):C564-72 [PMID: 16870829]
  2. Diabetes. 2005 Apr;54(4):928-34 [PMID: 15793229]
  3. Nat Neurosci. 2003 Nov;6(11):1153-61 [PMID: 14528310]
  4. J Biol Chem. 1992 Feb 15;267(5):2864-7 [PMID: 1346611]
  5. Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15712-7 [PMID: 14660788]
  6. J Biol Chem. 2004 Apr 16;279(16):16441-51 [PMID: 14761976]
  7. Cell Metab. 2007 May;5(5):371-81 [PMID: 17488639]
  8. Development. 2005 Jul;132(13):2943-54 [PMID: 15930105]
  9. Cell Death Differ. 2007 Feb;14(2):368-77 [PMID: 16841086]
  10. Cell Metab. 2009 May;9(5):407-16 [PMID: 19416711]
  11. DNA Res. 1996 Feb 29;3(1):17-24 [PMID: 8724849]
  12. Cell Metab. 2006 Dec;4(6):465-74 [PMID: 17141630]
  13. Nutr Metab (Lond). 2006 Aug 10;3:31 [PMID: 16901342]
  14. Nature. 2002 Jan 31;415(6871):541-4 [PMID: 11823862]
  15. Pharmacol Biochem Behav. 2008 Dec;91(2):217-22 [PMID: 18703079]
  16. Science. 2001 Jun 1;292(5522):1728-31 [PMID: 11387480]
  17. Am J Clin Nutr. 2004 May;79(5):881-6 [PMID: 15113729]
  18. Nature. 1997 Oct 9;389(6651):610-4 [PMID: 9335502]
  19. J Biol Chem. 2007 Feb 2;282(5):2862-70 [PMID: 17127674]
  20. Am J Physiol Endocrinol Metab. 2005 Oct;289(4):E643-9 [PMID: 15928020]
  21. J Biol Chem. 2001 Dec 14;276(50):46912-6 [PMID: 11598104]
  22. J Biol Chem. 1996 May 3;271(18):10583-7 [PMID: 8631859]
  23. J Lipid Res. 2004 Mar;45(3):419-26 [PMID: 14679165]
  24. Nat Rev Mol Cell Biol. 2008 May;9(5):367-77 [PMID: 18401346]
  25. Int J Obes (Lond). 2008 Sep;32(9):1431-7 [PMID: 18607383]
  26. J Biol Chem. 2006 Mar 3;281(9):5335-40 [PMID: 16340011]
  27. Diabetes. 2004 Apr;53(4):1060-7 [PMID: 15047622]
  28. Cell Metab. 2009 Jul;10(1):9-12 [PMID: 19583949]
  29. Am J Med. 2009 Apr;122(4 Suppl 1):S4-11 [PMID: 19410676]
  30. Mol Cell Biol. 2003 Apr;23(7):2476-88 [PMID: 12640130]
  31. Cell Mol Life Sci. 2008 Apr;65(7-8):1086-98 [PMID: 18097636]
  32. Mol Cell. 1999 Feb;3(2):151-8 [PMID: 10078198]
  33. Obesity (Silver Spring). 2006 Dec;14(12):2145-53 [PMID: 17189540]
  34. Am J Physiol. 1997 Dec;273(6):E1107-12 [PMID: 9435525]
  35. Proc Natl Acad Sci U S A. 2008 May 27;105(21):7570-5 [PMID: 18487454]
  36. Cell. 2000 Dec 8;103(6):919-30 [PMID: 11136977]
  37. Physiol Rev. 2007 Apr;87(2):507-20 [PMID: 17429039]
  38. Trends Mol Med. 2008 Dec;14(12):539-49 [PMID: 18977694]
  39. Proc Natl Acad Sci U S A. 2004 May 4;101(18):6993-8 [PMID: 15118108]
  40. Am J Physiol Endocrinol Metab. 2007 Dec;293(6):E1687-96 [PMID: 17911348]
  41. Biochem Biophys Res Commun. 2001 Sep 7;286(5):852-6 [PMID: 11527376]
  42. Nat Cell Biol. 2008 Jun;10(6):698-706 [PMID: 18469807]
  43. Nature. 2006 Sep 21;443(7109):289-95 [PMID: 16988703]
  44. Mol Cell. 2000 Jul;6(1):87-97 [PMID: 10949030]
  45. Science. 1995 Aug 25;269(5227):1108-12 [PMID: 7652557]
  46. Metabolism. 1997 Nov;46(11):1270-4 [PMID: 9361684]
  47. J Biol Chem. 1996 Jun 21;271(25):14834-9 [PMID: 8662926]
  48. Mol Cell Endocrinol. 2004 Feb 12;214(1-2):81-95 [PMID: 15062547]
  49. J Neurosci. 1999 Dec 15;19(24):10747-56 [PMID: 10594058]
  50. J Physiol. 2006 Jul 1;574(Pt 1):41-53 [PMID: 16644802]

Grants

  1. R01 DK080756/NIDDK NIH HHS
  2. R01 NS045627/NINDS NIH HHS
  3. R01 NS-045627/NINDS NIH HHS

MeSH Term

AMP-Activated Protein Kinase Kinases
Adipocytes
Animals
Cell Differentiation
DNA Primers
Dietary Fats
Exons
GTP Phosphohydrolases
Gene Expression
Insulin Resistance
Lipid Peroxidation
Mice
Mice, Inbred C57BL
Mice, Knockout
Nerve Tissue Proteins
Obesity
Phosphorylation
Protein Kinases
RNA
Sequence Deletion

Chemicals

DNA Primers
Dietary Fats
Nerve Tissue Proteins
RNA
Protein Kinases
AMP-Activated Protein Kinase Kinases
GTP Phosphohydrolases
PIKE protein, mouse

Word Cloud

Created with Highcharts 10.0.0PIKE-AmicePIKEobesityinsulinAMPKdevelopmentknockoutphosphorylationdiet-induceddiabetes3-kinaseenhanceractivitysensitivityadipocytedifferentiationlipidoxidationalsoadiposetissuemuscleOBJECTIVE:Phosphoinositideproto-oncogenepromotestumorgrowthtransformationenhancingAktHoweverphysiologicalfunctionsperipheraltissuesunknowndescribeeffectdeletionexploreroleRESEARCHDESIGNANDMETHODS:Whole-bodygeneratedsubjectedhigh-fat-dietfeeding20weeksglucosetolerancetissue-specificstatusdeterminedmolecularmechanismsignalingpathwaystudiedRESULTS:showregulatesmodulatingAMP-activatedproteinkinaseimportantsuppressexpressionmarkedlyincreasedobesewhereasdepletioninhibitsexhibitprominentphenotypelipoatrophyresistanthigh-fatliversteatosisaugmentedaccompaniedenhancedMoreoverimprovedPIKE-A-deficientfatthusprotectinganimalsCONCLUSIONS:resultssuggestimplicatedassociatednegativelyregulatingDeficiencyphosphoinositideprotectsresistance

Similar Articles

Cited By