Transcranial magnetic stimulation reveals the content of visual short-term memory in the visual cortex.

Juha Silvanto, Zaira Cattaneo
Author Information
  1. Juha Silvanto: Wellcome Trust Centre for Neuroimaging at UCL, 12 Queen Square, London, UK.

Abstract

Cortical areas involved in sensory analysis are also believed to be involved in short-term storage of that sensory information. Here we investigated whether transcranial magnetic stimulation (TMS) can reveal the content of visual short-term memory (VSTM) by bringing this information to visual awareness. Subjects were presented with two random-dot displays (moving either to the left or to the right) and they were required to maintain one of these in VSTM. In Experiment 1, TMS was applied over the motion-selective area V5/MT+ above phosphene threshold during the maintenance phase. The reported phosphene contained motion features of the memory item, when the phosphene spatially overlapped with memory item. Specifically, phosphene motion was enhanced when the memory item moved in the same direction as the subjects' V5/MT+ baseline phosphene, whereas it was reduced when the motion direction of the memory item was incongruent with that of the baseline V5/MT+ phosphene. There was no effect on phosphene reports when there was no spatial overlap between the phosphene and the memory item. In Experiment 2, VSTM maintenance did not influence the appearance of phosphenes induced from the lateral occipital region. These interactions between VSTM maintenance and phosphene appearance demonstrate that activity in V5/MT+ reflects the motion qualities of items maintained in VSTM. Furthermore, these results also demonstrate that information in VSTM can modulate the pattern of visual activation reaching awareness, providing evidence for the view that overlapping neuronal populations are involved in conscious visual perception and VSTM.

References

  1. J Neurosci. 2007 Oct 24;27(43):11465-72 [PMID: 17959789]
  2. Nat Rev Neurosci. 2003 Oct;4(10):829-39 [PMID: 14523382]
  3. Curr Biol. 2008 Jul 8;18(13):982-6 [PMID: 18583132]
  4. Neuron. 1998 Jul;21(1):191-202 [PMID: 9697863]
  5. Trends Neurosci. 1997 Oct;20(10):451-9 [PMID: 9347612]
  6. Brain Res. 2002 May 31;938(1-2):92-7 [PMID: 12031540]
  7. PLoS One. 2008 Feb 27;3(2):e1699 [PMID: 18301775]
  8. Neuroimage. 2008 May 1;40(4):1841-8 [PMID: 18353682]
  9. Curr Opin Neurobiol. 2003 Apr;13(2):159-66 [PMID: 12744968]
  10. J Neurosci. 1993 Apr;13(4):1460-78 [PMID: 8463829]
  11. Curr Biol. 2009 Nov 17;19(21):1799-805 [PMID: 19836243]
  12. Nature. 2009 Apr 2;458(7238):632-5 [PMID: 19225460]
  13. Science. 2001 Apr 20;292(5516):510-2 [PMID: 11313497]
  14. J Neurophysiol. 2006 Aug;96(2):941-5 [PMID: 16624999]
  15. Nat Rev Neurosci. 2005 Feb;6(2):97-107 [PMID: 15654324]
  16. Philos Trans R Soc Lond B Biol Sci. 2007 May 29;362(1481):761-72 [PMID: 17400538]
  17. Hum Brain Mapp. 2009 Oct;30(10):3115-26 [PMID: 19224619]
  18. Science. 2008 Aug 8;321(5890):851-4 [PMID: 18687968]
  19. Exp Brain Res. 2006 Nov;175(4):618-25 [PMID: 16819647]
  20. J Neurophysiol. 2004 Jan;91(1):286-300 [PMID: 14523065]
  21. Eur J Neurosci. 2009 Oct;30(7):1393-400 [PMID: 19788574]
  22. Curr Biol. 2007 Jan 23;17(2):134-9 [PMID: 17240338]
  23. Vision Res. 2001;41(10-11):1359-78 [PMID: 11322980]
  24. Optom Vis Sci. 1994 May;71(5):301-11 [PMID: 8065706]
  25. Science. 2001 Aug 24;293(5534):1506-9 [PMID: 11520991]
  26. Nature. 1993 May 27;363(6427):345-7 [PMID: 8497317]
  27. Cereb Cortex. 2009 Feb;19(2):327-30 [PMID: 18515296]
  28. Psychol Sci. 2009 Feb;20(2):207-14 [PMID: 19170936]
  29. Behav Brain Sci. 2001 Feb;24(1):87-114; discussion 114-85 [PMID: 11515286]
  30. Cereb Cortex. 2002 Jun;12(6):663-9 [PMID: 12003865]
  31. Cereb Cortex. 2006 Dec;16(12):1766-70 [PMID: 16407478]
  32. Neurosci Lett. 2009 Oct 25;462(3):253-6 [PMID: 19616067]
  33. J Neurophysiol. 1997 Sep;78(3):1263-75 [PMID: 9310418]
  34. Neuroscience. 2006 Apr 28;139(1):23-38 [PMID: 16324795]
  35. Cereb Cortex. 2000 Nov;10(11):1053-65 [PMID: 11053227]
  36. Cereb Cortex. 2003 Jul;13(7):716-21 [PMID: 12816886]
  37. Clin Neurophysiol. 2008 Mar;119(3):724-726 [PMID: 18164239]
  38. Proc Natl Acad Sci U S A. 2007 Oct 23;104(43):17186-91 [PMID: 17940037]
  39. J Exp Psychol Hum Percept Perform. 2001 Feb;27(1):92-114 [PMID: 11248943]
  40. Electroencephalogr Clin Neurophysiol Suppl. 1999;51:334-50 [PMID: 10590967]
  41. Cogn Psychol. 1998 Jul;36(2):138-202 [PMID: 9721199]
  42. Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9379-84 [PMID: 10430951]
  43. Nat Neurosci. 2005 Feb;8(2):143-4 [PMID: 15643428]

MeSH Term

Adolescent
Adult
Analysis of Variance
Female
Humans
Male
Memory, Short-Term
Motion Perception
Neuropsychological Tests
Photic Stimulation
Transcranial Magnetic Stimulation
Visual Cortex
Visual Perception
Young Adult

Word Cloud

Created with Highcharts 10.0.0phosphenememoryVSTMvisualitemV5/MT+motioninvolvedshort-terminformationmaintenancesensoryalsomagneticstimulationTMScancontentawarenessExperimentdirectionbaselineappearancedemonstrateCorticalareasanalysisbelievedstorageinvestigatedwhethertranscranialrevealbringingSubjectspresentedtworandom-dotdisplaysmovingeitherleftrightrequiredmaintainone1appliedmotion-selectiveareathresholdphasereportedcontainedfeaturesspatiallyoverlappedSpecificallyenhancedmovedsubjects'whereasreducedincongruenteffectreportsspatialoverlap2influencephosphenesinducedlateraloccipitalregioninteractionsactivityreflectsqualitiesitemsmaintainedFurthermoreresultsmodulatepatternactivationreachingprovidingevidenceviewoverlappingneuronalpopulationsconsciousperceptionTranscranialrevealscortex

Similar Articles

Cited By