PCA-based bootstrap confidence interval tests for gene-disease association involving multiple SNPs.

Qianqian Peng, Jinghua Zhao, Fuzhong Xue
Author Information
  1. Qianqian Peng: Department of Epidemiology and Health Statistics, School of Public Health, Shandong University, Jinan 250012, PR China.

Abstract

BACKGROUND: Genetic association study is currently the primary vehicle for identification and characterization of disease-predisposing variant(s) which usually involves multiple single-nucleotide polymorphisms (SNPs) available. However, SNP-wise association tests raise concerns over multiple testing. Haplotype-based methods have the advantage of being able to account for correlations between neighbouring SNPs, yet assuming Hardy-Weinberg equilibrium (HWE) and potentially large number degrees of freedom can harm its statistical power and robustness. Approaches based on principal component analysis (PCA) are preferable in this regard but their performance varies with methods of extracting principal components (PCs).
RESULTS: PCA-based bootstrap confidence interval test (PCA-BCIT), which directly uses the PC scores to assess gene-disease association, was developed and evaluated for three ways of extracting PCs, i.e., cases only(CAES), controls only(COES) and cases and controls combined(CES). Extraction of PCs with COES is preferred to that with CAES and CES. Performance of the test was examined via simulations as well as analyses on data of rheumatoid arthritis and heroin addiction, which maintains nominal level under null hypothesis and showed comparable performance with permutation test.
CONCLUSIONS: PCA-BCIT is a valid and powerful method for assessing gene-disease association involving multiple SNPs.

References

  1. Genet Epidemiol. 2005 Dec;29(4):313-22 [PMID: 16240441]
  2. Genome Res. 2001 Jan;11(1):143-51 [PMID: 11156623]
  3. N Engl J Med. 2007 Sep 20;357(12):1199-209 [PMID: 17804836]
  4. Am J Hum Genet. 2003 Dec;73(6):1316-29 [PMID: 14631556]
  5. Am J Hum Genet. 2005 Oct;77(4):567-81 [PMID: 16175503]
  6. Am J Hum Genet. 2007 May;80(5):867-75 [PMID: 17436241]
  7. Genet Epidemiol. 2007 Jul;31(5):383-95 [PMID: 17410554]
  8. Am J Hum Genet. 2005 May;76(5):780-93 [PMID: 15786018]
  9. Nat Rev Genet. 2006 Oct;7(10):781-91 [PMID: 16983374]
  10. Am J Hum Genet. 2004 Aug;75(2):330-7 [PMID: 15208781]
  11. Hum Hered. 2003;56(1-3):18-31 [PMID: 14614235]
  12. Biometrics. 1997 Dec;53(4):1253-61 [PMID: 9423247]
  13. Hum Hered. 2003;55(4):179-90 [PMID: 14566096]
  14. Proc Natl Acad Sci U S A. 1998 Sep 15;95(19):11389-93 [PMID: 9736746]
  15. Genet Epidemiol. 2004 Dec;27(4):415-28 [PMID: 15481099]
  16. Biol Psychiatry. 2007 Jun 1;61(11):1244-51 [PMID: 17157823]
  17. Am J Hum Genet. 2005 Dec;77(6):1044-60 [PMID: 16380915]
  18. J Genet Genomics. 2008 Jun;35(6):381-5 [PMID: 18571127]
  19. Genet Epidemiol. 2007 Dec;31(8):853-70 [PMID: 17565750]
  20. Am J Hum Genet. 2007 Feb;80(2):353-60 [PMID: 17236140]
  21. BMC Proc. 2007;1 Suppl 1:S130 [PMID: 18466473]
  22. Hum Hered. 2001;52(3):149-53 [PMID: 11588398]

Grants

  1. MC_U106179471/Medical Research Council

MeSH Term

Adult
Computer Simulation
Confidence Intervals
Female
Genetic Predisposition to Disease
Genome-Wide Association Study
Haplotypes
Humans
Male
Models, Genetic
Models, Statistical
Polymorphism, Single Nucleotide
Principal Component Analysis
Receptors, Opioid, mu
Young Adult

Chemicals

OPRM1 protein, human
Receptors, Opioid, mu

Word Cloud

Created with Highcharts 10.0.0associationmultipleSNPsPCstestgene-diseasetestsmethodsprincipalperformanceextractingPCA-basedbootstrapconfidenceintervalPCA-BCITcasesCAEScontrolsCOESCESinvolvingBACKGROUND:Geneticstudycurrentlyprimaryvehicleidentificationcharacterizationdisease-predisposingvariantsusuallyinvolvessingle-nucleotidepolymorphismsavailableHoweverSNP-wiseraiseconcernstestingHaplotype-basedadvantageableaccountcorrelationsneighbouringyetassumingHardy-WeinbergequilibriumHWEpotentiallylargenumberdegreesfreedomcanharmstatisticalpowerrobustnessApproachesbasedcomponentanalysisPCApreferableregardvariescomponentsRESULTS:directlyusesPCscoresassessdevelopedevaluatedthreewaysiecombinedExtractionpreferredPerformanceexaminedviasimulationswellanalysesdatarheumatoidarthritisheroinaddictionmaintainsnominallevelnullhypothesisshowedcomparablepermutationCONCLUSIONS:validpowerfulmethodassessing

Similar Articles

Cited By