Kinetic parameters of efflux of penicillins by the multidrug efflux transporter AcrAB-TolC of Escherichia coli.

Siew Ping Lim, Hiroshi Nikaido
Author Information
  1. Siew Ping Lim: Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA.

Abstract

The multidrug efflux transporter AcrAB-TolC is known to pump out a diverse range of antibiotics, including beta-lactams. However, the kinetic constants of the efflux process, needed for the quantitative understanding of resistance, were not available until those accompanying the efflux of some cephalosporins were recently determined by combining efflux with the hydrolysis of drugs by the periplasmic beta-lactamase. In the present study we extended this approach to the study of a wide range of penicillins, from ampicillin and penicillin V to ureidopenicillins and isoxazolylpenicillins, by combining efflux with hydrolysis with the OXA-7 penicillinase. We found that the penicillins had a much stronger apparent affinity to AcrB and higher maximum rates of efflux than the cephalosporins. All penicillins showed strong positive cooperativity kinetics for export. The kinetic constants obtained were validated, as the MICs theoretically predicted on the basis of efflux and hydrolysis kinetics were remarkably similar to the observed MICs (except for the isoxazolylpenicillins). Surprisingly, however, the efflux kinetics of cloxacillin, for example, whose MIC decreased 512-fold in Escherichia coli upon the genetic deletion of the acrB gene, were quite similar to those of ampicillin, whose MIC decreased only 2-fold with the same treatment. Analysis of this phenomenon showed that the extensive decrease in the MIC for the acrB mutant is primarily due to the low permeation of the drug and that comparison of the MICs between the parent and the acrB strains is a very poor measure of the ability of AcrB to pump a drug out.

References

  1. Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5854-8 [PMID: 19307562]
  2. J Biol Chem. 2004 Jul 30;279(31):32116-24 [PMID: 15155734]
  3. Proc Natl Acad Sci U S A. 2009 Apr 28;106(17):7173-8 [PMID: 19342493]
  4. Biochim Biophys Acta. 2009 May;1794(5):769-81 [PMID: 19026770]
  5. J Bacteriol. 1983 Jan;153(1):241-52 [PMID: 6294049]
  6. Semin Cell Dev Biol. 2001 Jun;12(3):215-23 [PMID: 11428914]
  7. Clin Microbiol Rev. 2009 Jan;22(1):161-82, Table of Contents [PMID: 19136439]
  8. Gene. 1987;61(1):63-74 [PMID: 3327753]
  9. J Bacteriol. 2009 Mar;191(6):1729-37 [PMID: 19060146]
  10. Drugs. 2004;64(2):159-204 [PMID: 14717618]
  11. EMBO J. 1982;1(7):875-81 [PMID: 6329713]
  12. Antimicrob Agents Chemother. 2000 May;44(5):1387-90 [PMID: 10770787]
  13. Curr Opin Struct Biol. 2004 Dec;14(6):741-7 [PMID: 15582398]
  14. Antimicrob Agents Chemother. 1985 Jan;27(1):84-92 [PMID: 2580479]
  15. Biochem J. 1988 Oct 1;255(1):119-22 [PMID: 3264154]
  16. Drugs. 2009 Aug 20;69(12):1555-623 [PMID: 19678712]
  17. J Bacteriol. 1998 Sep;180(17):4686-92 [PMID: 9721312]
  18. Antimicrob Agents Chemother. 1995 Jun;39(6):1211-33 [PMID: 7574506]
  19. Mol Microbiol. 1996 Jan;19(1):101-12 [PMID: 8821940]
  20. J Bacteriol. 1983 Jan;153(1):232-40 [PMID: 6294048]
  21. Science. 2006 Sep 1;313(5791):1295-8 [PMID: 16946072]
  22. J Bacteriol. 1996 Jan;178(1):306-8 [PMID: 8550435]
  23. J Bacteriol. 1988 Feb;170(2):528-33 [PMID: 2828311]
  24. J Antimicrob Chemother. 2005 Jul;56(1):20-51 [PMID: 15914491]
  25. Annu Rev Biochem. 2009;78:119-46 [PMID: 19231985]
  26. Antimicrob Agents Chemother. 1995 Jun;39(6):1379-82 [PMID: 7574536]
  27. Mol Microbiol. 1987 Jul;1(1):29-36 [PMID: 3330755]
  28. Biochem J. 1962 May;83:236-40 [PMID: 14480578]
  29. Nature. 2006 Sep 14;443(7108):173-9 [PMID: 16915237]
  30. FEBS Lett. 1991 Jan 14;278(1):31-4 [PMID: 1704313]
  31. Methods Enzymol. 1995;249:519-67 [PMID: 7791626]
  32. Antimicrob Agents Chemother. 1972 Feb;1(2):94-9 [PMID: 4618455]
  33. J Bacteriol. 2007 Dec;189(23):8677-84 [PMID: 17905989]
  34. Antimicrob Agents Chemother. 1994 Aug;38(8):1742-52 [PMID: 7986004]
  35. PLoS Biol. 2007 Jan;5(1):e7 [PMID: 17194213]
  36. Antimicrob Agents Chemother. 1985 May;27(5):715-9 [PMID: 3925874]
  37. Clin Microbiol Infect. 2004 Nov;10 Suppl 4:1-9 [PMID: 15522034]

Grants

  1. R01 AI009644/NIAID NIH HHS
  2. R37 AI009644/NIAID NIH HHS
  3. AI-09644/NIAID NIH HHS

MeSH Term

Bacterial Outer Membrane Proteins
Cephalosporins
Drug Resistance, Bacterial
Escherichia coli
Escherichia coli Proteins
Kinetics
Lipoproteins
Membrane Transport Proteins
Microbial Sensitivity Tests
Multidrug Resistance-Associated Proteins
Penicillins
Plasmids
beta-Lactamases

Chemicals

AcrA protein, E coli
AcrB protein, E coli
Bacterial Outer Membrane Proteins
Cephalosporins
Escherichia coli Proteins
Lipoproteins
Membrane Transport Proteins
Multidrug Resistance-Associated Proteins
Penicillins
tolC protein, E coli
beta-Lactamases

Word Cloud

Created with Highcharts 10.0.0effluxpenicillinshydrolysiskineticsMICsMICacrBmultidrugtransporterAcrAB-TolCpumprangekineticconstantscephalosporinscombiningstudyampicillinisoxazolylpenicillinsAcrBshowedsimilarwhosedecreasedEscherichiacolidrugknowndiverseantibioticsincludingbeta-lactamsHoweverprocessneededquantitativeunderstandingresistanceavailableaccompanyingrecentlydetermineddrugsperiplasmicbeta-lactamasepresentextendedapproachwidepenicillinVureidopenicillinsOXA-7penicillinasefoundmuchstrongerapparentaffinityhighermaximumratesstrongpositivecooperativityexportobtainedvalidatedtheoreticallypredictedbasisremarkablyobservedexceptSurprisinglyhowevercloxacillinexample512-foldupongeneticdeletiongenequite2-foldtreatmentAnalysisphenomenonextensivedecreasemutantprimarilyduelowpermeationcomparisonparentstrainspoormeasureabilityoutKineticparameters

Similar Articles

Cited By