QTL detection by multi-parent linkage mapping in oil palm (Elaeis guineensis Jacq.).

N Billotte, M F Jourjon, N Marseillac, A Berger, A Flori, H Asmady, B Adon, R Singh, B Nouy, F Potier, S C Cheah, W Rohde, E Ritter, B Courtois, A Charrier, B Mangin
Author Information
  1. N Billotte: Centre de coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR 1098 Plant Development and Molecular Improvement, Avenue Agropolis, TA 03/96, 34398, Montpellier Cedex 5, France. billotte@cirad.fr

Abstract

A quantitative trait locus (QTL) analysis designed for a multi-parent population was carried out and tested in oil palm (Elaeis guineensis Jacq.), which is a diploid cross-fertilising perennial species. A new extension of the MCQTL package was especially designed for crosses between heterozygous parents. The algorithm, which is now available for any allogamous species, was used to perform and compare two types of QTL search for small size families, within-family analysis and across-family analysis, using data from a 2 x 2 complete factorial mating experiment involving four parents from three selected gene pools. A consensus genetic map of the factorial design was produced using 251 microsatellite loci, the locus of the Sh major gene controlling fruit shell presence, and an AFLP marker of that gene. A set of 76 QTLs involved in 24 quantitative phenotypic traits was identified. A comparison of the QTL detection results showed that the across-family analysis proved to be efficient due to the interconnected families, but the family size issue is just partially solved. The identification of QTL markers for small progeny numbers and for marker-assisted selection strategies is discussed.

References

  1. Genetics. 1998 May;149(1):383-403 [PMID: 9584111]
  2. Proc Int Conf Intell Syst Mol Biol. 1997;5:258-67 [PMID: 9322047]
  3. Bioinformatics. 2005 Jan 1;21(1):128-30 [PMID: 15319261]
  4. Heredity (Edinb). 2000 Sep;85 Pt 3:288-93 [PMID: 11012733]
  5. Theor Appl Genet. 1992 Sep;84(7-8):803-11 [PMID: 24201478]
  6. Genetics. 1990 Mar;124(3):735-42 [PMID: 1968874]
  7. Genome. 1997 Feb;40(1):116-22 [PMID: 18464812]
  8. Genetics. 1998 Jan;148(1):517-24 [PMID: 9475760]
  9. Heredity (Edinb). 1992 Oct;69(4):315-24 [PMID: 16718932]
  10. BMC Plant Biol. 2009 Aug 26;9:114 [PMID: 19706196]
  11. Genetics. 1994 Aug;137(4):1121-37 [PMID: 7982566]
  12. Genetics. 2000 Apr;154(3):1839-1849 [PMID: 10866652]
  13. Theor Appl Genet. 2002 Apr;104(5):751-762 [PMID: 12582634]
  14. Genetics. 2000 Sep;156(1):411-22 [PMID: 10978304]
  15. Plant Cell Rep. 1997 Oct;16(12):884-887 [PMID: 30727598]
  16. Genetics. 1990 Jul;125(3):645-54 [PMID: 1974227]
  17. Theor Appl Genet. 1996 Jul;93(1-2):71-80 [PMID: 24162201]
  18. Genetics. 1994 Nov;138(3):963-71 [PMID: 7851788]
  19. Genome. 2001 Jun;44(3):413-25 [PMID: 11444700]
  20. Theor Appl Genet. 2005 Feb;110(4):754-65 [PMID: 15723275]
  21. Theor Popul Biol. 2002 May;61(3):349-63 [PMID: 12027621]

MeSH Term

Arecaceae
Chromosome Mapping
Chromosomes, Plant
Crosses, Genetic
Genes, Plant
Genetic Linkage
Genetic Markers
Genetic Variation
Heterozygote
Microsatellite Repeats
Models, Genetic
Phenotype
Quantitative Trait Loci

Chemicals

Genetic Markers

Word Cloud

Created with Highcharts 10.0.0QTLanalysisgenequantitativelocusdesignedmulti-parentoilpalmElaeisguineensisJacqspeciesparentssmallsizefamiliesacross-familyusing2factorialdetectiontraitpopulationcarriedtesteddiploidcross-fertilisingperennialnewextensionMCQTLpackageespeciallycrossesheterozygousalgorithmnowavailableallogamoususedperformcomparetwotypessearchwithin-familydataxcompletematingexperimentinvolvingfourthreeselectedpoolsconsensusgeneticmapdesignproduced251microsatellitelociShmajorcontrollingfruitshellpresenceAFLPmarkerset76QTLsinvolved24phenotypictraitsidentifiedcomparisonresultsshowedprovedefficientdueinterconnectedfamilyissuejustpartiallysolvedidentificationmarkersprogenynumbersmarker-assistedselectionstrategiesdiscussedlinkagemapping

Similar Articles

Cited By