Classification of myalgic encephalomyelitis/chronic fatigue syndrome by types of fatigue.

Leonard A Jason, Aaron Boulton, Nicole S Porter, Tricia Jessen, Mary Gloria Njoku, Fred Friedberg
Author Information
  1. Leonard A Jason: Center for Community Research, 990 W. Fullerton Ave., Suite 3100, Chicago, IL 60614, USA. ljason@depaul.edu

Abstract

Persons with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) often complain of fatigue states (eg, postexertional malaise, brain fog) that are qualitatively different than normal, daily fatigue. Given the heterogeneous nature of ME/CFS, it is likely that individuals with this illness experience these fatigue types differently in terms of severity and frequency. It is also possible that meaningful subgroups of patients exist that exhibit different patterns of the fatigue experience. The purpose of this study was to investigate whether individuals with ME/CFS can be classified in a meaningful way according to the different types of fatigue they experience. One hundred individuals with ME/CFS participated in the study. Individuals that met inclusion criteria were administered the Multiple Fatigue Types Questionnaire (MFTQ), a 5-factor instrument that distinguishes between different types of fatigue. A cluster analysis was used to classify patients into various clusters based on factor subscale scores. Using a 3-factor solution, individuals were classified according to illness severity (low, moderate, severe) across the different fatigue factors. However, a 5-cluster solution enabled participants with moderate to severe fatigue levels to fall into more differentiated clusters and demonstrate distinct fatigue state patterns. These results suggest that fatigue patterns of individuals with ME/CFS are heterogeneous, and that patients may be classified into meaningful subgroups.

References

  1. Proc Natl Acad Sci U S A. 2008 Feb 12;105(6):2198-202 [PMID: 18268335]
  2. Clin Diagn Lab Immunol. 2005 Jan;12(1):52-5 [PMID: 15642984]
  3. Am J Epidemiol. 1998 Jul 1;148(1):72-7 [PMID: 9663406]
  4. Neuroreport. 2004 Dec 3;15(17):2571-4 [PMID: 15570154]
  5. Psychol Med. 1995 Sep;25(5):925-35 [PMID: 8588011]
  6. Ann Intern Med. 1994 Dec 15;121(12):953-9 [PMID: 7978722]
  7. J Psychosom Res. 2000 Jan;48(1):59-68 [PMID: 10750631]
  8. Aust N Z J Psychiatry. 2009 Jan;43(1):25-35 [PMID: 19085525]
  9. Arch Intern Med. 1999 Oct 11;159(18):2129-37 [PMID: 10527290]
  10. Neuropsychol Rev. 2005 Mar;15(1):29-58 [PMID: 15929497]
  11. Muscle Nerve. 1994 Oct;17(10):1210-2 [PMID: 7935529]
  12. BMC Health Serv Res. 2005 May 13;5:37 [PMID: 15892882]
  13. Free Radic Biol Med. 2005 Sep 1;39(5):584-9 [PMID: 16085177]
  14. J Infect Dis. 2008 Apr 15;197(8):1171-84 [PMID: 18462164]
  15. J Psychosom Res. 2004 Feb;56(2):171-8 [PMID: 15016574]
  16. Br J Health Psychol. 2005 Sep;10(Pt 3):329-58 [PMID: 16238852]
  17. Soc Psychiatry Psychiatr Epidemiol. 2002 Apr;37(4):183-9 [PMID: 12027245]
  18. Aust N Z J Psychiatry. 2001 Aug;35(4):520-7 [PMID: 11531735]
  19. J Psychosom Res. 1995 Apr;39(3):315-25 [PMID: 7636775]
  20. Health Qual Life Outcomes. 2007 Jul 02;5:36 [PMID: 17605783]
  21. J Psychosom Res. 1993;37(2):147-53 [PMID: 8463991]

Grants

  1. R01 AI036295-05/NIAID NIH HHS
  2. R01 AI049720/NIAID NIH HHS
  3. R01 AI049720-05/NIAID NIH HHS
  4. R01 AI036295/NIAID NIH HHS
  5. AI49720/NIAID NIH HHS

MeSH Term

Cluster Analysis
Fatigue
Fatigue Syndrome, Chronic
Female
Humans
Male
Middle Aged
Surveys and Questionnaires

Word Cloud

Created with Highcharts 10.0.0fatigueME/CFSdifferentindividualstypesexperiencemeaningfulpatientspatternsclassifiedmyalgicencephalomyelitis/chronicsyndromeheterogeneousillnessseveritysubgroupsstudyaccordingclusterssolutionmoderateseverePersonsoftencomplainstatesegpostexertionalmalaisebrainfogqualitativelynormaldailyGivennaturelikelydifferentlytermsfrequencyalsopossibleexistexhibitpurposeinvestigatewhethercanwayOnehundredparticipatedIndividualsmetinclusioncriteriaadministeredMultipleFatigueTypesQuestionnaireMFTQ5-factorinstrumentdistinguishesclusteranalysisusedclassifyvariousbasedfactorsubscalescoresUsing3-factorlowacrossfactorsHowever5-clusterenabledparticipantslevelsfalldifferentiateddemonstratedistinctstateresultssuggestmayClassification

Similar Articles

Cited By