Synergy of fosfomycin with other antibiotics for Gram-positive and Gram-negative bacteria.

Antonia C Kastoris, Petros I Rafailidis, Evridiki K Vouloumanou, Ioannis D Gkegkes, Matthew E Falagas
Author Information
  1. Antonia C Kastoris: Alfa Institute of Biomedical Sciences, Athens, Greece.

Abstract

BACKGROUND: The alarming increase in drug resistance and decreased production of new antibiotics necessitate the evaluation of combinations of existing antibiotics. Fosfomycin shows no cross-resistance to other antibiotic classes. Thus, its combination with other antibiotics may potentially show synergy against resistant bacteria.
OBJECTIVE: To evaluate the available published evidence regarding the in vitro synergistic activity of fosfomycin with other antibiotic agents against Gram-positive and Gram-negative bacteria.
METHODS: PubMed and the Cochrane Library were searched.
RESULTS: Forty-one studies, including 34 (82.9%) conducted/published before 2000, were eligible for inclusion. The relatively limited number of isolates examined and the considerable heterogeneity of the retrieved studies regarding the definitions of synergy and the methodologies used hamper conclusive remarks for specific combinations of fosfomycin with other antibiotics. Yet, in the 27 studies providing data for Gram-positive strains (16 for Staphylococcus aureus, 3 for coagulase-negative staphylococci, 5 for Streptococcus pneumoniae, and 3 for Enterococcus spp.), fosfomycin showed synergy against methicillin-resistant Staphylococcus aureus when combined with cefamandole, cephazolin, ceftriaxone, ciprofloxacin, imipenem, and rifampicin. Data regarding Gram-negative strains reported from 15 studies (12 exclusively for P. aeruginosa, 2 exclusively for Enterobacteriaceae, 1 for both, and 1 for Acinetobacter baumannii) suggested that fosfomycin showed an estimable synergistic effect with gentamicin, amikacin, ceftazidime, cefepime, ciprofloxacin, levofloxacin, and aztreonam against P. aeruginosa.
CONCLUSIONS: The synergistic combination of fosfomycin with other antibiotics may be a useful alternative treatment option for Gram-negative and Gram-positive infections. Additional studies using more stringent definitions of synergy, and studies reporting on the clinical efficacy of fosfomycin combinations in the current era of high antimicrobial resistance are needed.

References

  1. J Antimicrob Chemother. 1994 Dec;34(6):899-907 [PMID: 7730233]
  2. Arch Otolaryngol Head Neck Surg. 1990 Jan;116(1):49-53 [PMID: 2153024]
  3. Microbios. 1992;71(287):95-103 [PMID: 1453987]
  4. Antimicrob Agents Chemother. 1985 Nov;28(5):689-90 [PMID: 3853963]
  5. Eur J Clin Microbiol Infect Dis. 2005 Apr;24(4):276-9 [PMID: 15902535]
  6. J Antimicrob Chemother. 1991 Jun;27(6):809-15 [PMID: 1938687]
  7. Int J Antimicrob Agents. 2009 Dec;34(6):506-15 [PMID: 19828298]
  8. Clin Infect Dis. 1999 Oct;29(4):745-58 [PMID: 10589881]
  9. Infection. 1987 Jul-Aug;15(4):264 [PMID: 3117699]
  10. Int J Antimicrob Agents. 2003 Oct;22 Suppl 2:95-100 [PMID: 14527779]
  11. Arch Intern Med. 2008 Sep 22;168(17):1897-902 [PMID: 18809817]
  12. J Infect Chemother. 2001 Dec;7(4):243-6 [PMID: 11810591]
  13. Pathol Biol (Paris). 1994 Apr;42(4):293-5 [PMID: 7808781]
  14. Eur J Clin Microbiol Infect Dis. 1997 Jul;16(7):535-7 [PMID: 9272391]
  15. Chemotherapy. 1977;23 Suppl 1:416-22 [PMID: 318977]
  16. Pathol Biol (Paris). 1987 Jun;35(5 Pt 2):839-42 [PMID: 3309825]
  17. Pathol Biol (Paris). 1987 May;35(5):507-9 [PMID: 3302853]
  18. J Antimicrob Chemother. 1996 Dec;38(6):1107-8 [PMID: 9023661]
  19. J Antimicrob Chemother. 1987 Feb;19(2):276-8 [PMID: 3571049]
  20. Antimicrob Agents Chemother. 1978 May;13(5):705-9 [PMID: 666297]
  21. J Infect Chemother. 2002 Mar;8(1):37-42 [PMID: 11957118]
  22. J Antimicrob Chemother. 2006 Oct;58(4):848-52 [PMID: 16891630]
  23. Antimicrob Agents Chemother. 1994 Nov;38(11):2655-9 [PMID: 7872763]
  24. Rev Esp Quimioter. 2006 Sep;19(3):252-7 [PMID: 17099793]
  25. Microb Drug Resist. 1995 Summer;1(2):185-9 [PMID: 9158754]
  26. Acta Med Okayama. 2005 Oct;59(5):209-16 [PMID: 16286954]
  27. J Antimicrob Chemother. 1978 Nov;4(6):569-76 [PMID: 711653]
  28. Pathol Biol (Paris). 1992 May;40(5):483-91 [PMID: 1495831]
  29. J Pharmacobiodyn. 1982 Dec;5(12):941-50 [PMID: 7169607]
  30. J Antimicrob Chemother. 1988 Jul;22(1):41-50 [PMID: 3139615]
  31. Clin Infect Dis. 2008 Apr 1;46(7):1069-77 [PMID: 18444827]
  32. Int J Antimicrob Agents. 2009 Aug;34(2):111-20 [PMID: 19403273]
  33. Pathol Biol (Paris). 1986 May;34(5):479-82 [PMID: 3534726]
  34. Antimicrob Agents Chemother. 1986 Dec;30(6):917-22 [PMID: 3468883]
  35. J Infect Chemother. 2003 Dec;9(4):304-9 [PMID: 14691650]
  36. Rev Esp Quimioter. 2009 Mar;22(1):25-9 [PMID: 19308743]
  37. J Antimicrob Chemother. 2008 Aug;62(2):356-9 [PMID: 18424789]
  38. Antimicrob Agents Chemother. 1999 Apr;43(4):789-93 [PMID: 10103182]
  39. Antimicrob Agents Chemother. 1986 Nov;30(5):813-5 [PMID: 2948444]
  40. Clin Infect Dis. 2005 May 1;40(9):1333-41 [PMID: 15825037]
  41. Antimicrob Agents Chemother. 1984 Nov;26(5):789-91 [PMID: 6440482]
  42. Antimicrob Agents Chemother. 1995 Oct;39(10):2341-4 [PMID: 8619593]
  43. Southeast Asian J Trop Med Public Health. 2005 Sep;36(5):1239-42 [PMID: 16438151]
  44. Agressologie. 1983 Apr;24(4):169-71 [PMID: 6314832]
  45. Drugs. 1997 Apr;53(4):637-56 [PMID: 9098664]
  46. Chemotherapy. 2007;53(3):202-9 [PMID: 17356268]
  47. Pathol Biol (Paris). 1984 Jun;32(5 Pt 2):528-31 [PMID: 6462742]
  48. J Infect Chemother. 1999 Sep;5(3):130-138 [PMID: 11810504]
  49. Infection. 1989 Jan-Feb;17(1):35-7 [PMID: 2921087]
  50. J Antimicrob Chemother. 2001 Aug;48(2):209-17 [PMID: 11481290]
  51. Antimicrob Agents Chemother. 1989 Apr;33(4):470-3 [PMID: 2543282]
  52. Taiwan Yi Xue Hui Za Zhi. 1989 May;88(5):488-92 [PMID: 2794948]
  53. Curr Opin Investig Drugs. 2009 Feb;10(2):172-80 [PMID: 19197795]
  54. Infection. 1985;13 Suppl 1:S123-8 [PMID: 3850854]
  55. J Infect Chemother. 2002 Sep;8(3):218-26 [PMID: 12373484]
  56. Chemotherapy. 1998 Jul-Aug;44(4):243-59 [PMID: 9681201]
  57. Pathol Biol (Paris). 1997 Jun;45(6):472-8 [PMID: 9309262]
  58. Eur J Clin Microbiol Infect Dis. 1997 Feb;16(2):159-62 [PMID: 9105845]
  59. Antimicrob Agents Chemother. 2009 Mar;53(3):1278-80 [PMID: 19124661]
  60. Antimicrob Agents Chemother. 2003 Sep;47(9):2850-8 [PMID: 12936984]
  61. Expert Rev Anti Infect Ther. 2008 Oct;6(5):593-600 [PMID: 18847400]

MeSH Term

Acinetobacter baumannii
Amikacin
Anti-Bacterial Agents
Bacteria
Cefepime
Ceftazidime
Cephalosporins
Ciprofloxacin
Enterobacteriaceae
Fosfomycin
Gentamicins
Gram-Negative Bacteria
Methicillin Resistance

Chemicals

Anti-Bacterial Agents
Cephalosporins
Gentamicins
Fosfomycin
Ciprofloxacin
Cefepime
Amikacin
Ceftazidime

Word Cloud

Created with Highcharts 10.0.0fosfomycinantibioticsstudiessynergyGram-positiveGram-negativecombinationsbacteriaregardingsynergisticresistanceantibioticcombinationmaydefinitionsstrainsStaphylococcusaureus3showedciprofloxacinexclusivelyPaeruginosa1BACKGROUND:alarmingincreasedrugdecreasedproductionnewnecessitateevaluationexistingFosfomycinshowscross-resistanceclassesThuspotentiallyshowresistantOBJECTIVE:evaluateavailablepublishedevidencevitroactivityagentsMETHODS:PubMedCochraneLibrarysearchedRESULTS:Forty-oneincluding34829%conducted/published2000eligibleinclusionrelativelylimitednumberisolatesexaminedconsiderableheterogeneityretrievedmethodologiesusedhamperconclusiveremarksspecificYet27providingdata16coagulase-negativestaphylococci5StreptococcuspneumoniaeEnterococcussppmethicillin-resistantcombinedcefamandolecephazolinceftriaxoneimipenemrifampicinDatareported15122EnterobacteriaceaeAcinetobacterbaumanniisuggestedestimableeffectgentamicinamikacinceftazidimecefepimelevofloxacinaztreonamCONCLUSIONS:usefulalternativetreatmentoptioninfectionsAdditionalusingstringentreportingclinicalefficacycurrenterahighantimicrobialneededSynergy

Similar Articles

Cited By