The SigF regulon in Mycobacterium smegmatis reveals roles in adaptation to stationary phase, heat, and oxidative stress.

Anja Hümpel, Susanne Gebhard, Gregory M Cook, Michael Berney
Author Information
  1. Anja Hümpel: Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, P.O. Box 56, Dunedin, New Zealand.

Abstract

SigF is an alternative sigma factor that is highly conserved among species of the genus Mycobacterium. In this study we identified the SigF regulon in Mycobacterium smegmatis using whole-genome microarray and promoter consensus analyses. In total, 64 genes in exponential phase and 124 genes in stationary phase are SigF dependent (P < 0.01, >2-fold expression change). Our experimental data reveal the SigF-dependent promoter consensus GTTT-N((15-17))-GGGTA for M. smegmatis, and we propose 130 potential genes under direct control of SigF, of which more than 50% exhibited reduced expression in a Delta sigF strain. We previously reported an increased susceptibility of the Delta sigF strain to heat and oxidative stress, and our expression data indicate a molecular basis for these phenotypes. We observed SigF-dependent expression of several genes purportedly involved in oxidative stress defense, namely, a heme-containing catalase, a manganese-containing catalase, a superoxide dismutase, the starvation-induced DNA-protecting protein MsDps1, and the biosynthesis genes for the carotenoid isorenieratene. Our data suggest that SigF regulates the biosynthesis of the thermoprotectant trehalose, as well as an uptake system for osmoregulatory compounds, and this may explain the increased heat susceptibility of the Delta sigF strain. We identified the regulatory proteins SigH3, PhoP, WhiB1, and WhiB4 as possible genes under direct control of SigF and propose four novel anti-sigma factor antagonists that could be involved in the posttranslational regulation of SigF in M. smegmatis. This study emphasizes the importance of this sigma factor for stationary-phase adaptation and stress response in mycobacteria.

References

  1. Nucleic Acids Res. 2009 Jan;37(Database issue):D229-32 [PMID: 18978020]
  2. J Bacteriol. 2008 Dec;190(23):7859-63 [PMID: 18805974]
  3. Mol Microbiol. 2009 Nov;74(3):557-81 [PMID: 19737356]
  4. Nat Rev Microbiol. 2009 Dec;7(12):856-63 [PMID: 19881522]
  5. Microbiology. 2000 Jan;146 ( Pt 1):199-208 [PMID: 10658666]
  6. Microbiology. 2000 Feb;146 ( Pt 2):333-43 [PMID: 10708372]
  7. Infect Immun. 2000 Oct;68(10):5575-80 [PMID: 10992456]
  8. Arch Microbiol. 2000 Oct;174(4):217-24 [PMID: 11081789]
  9. Mol Microbiol. 1997 Jul;25(1):175-87 [PMID: 11902719]
  10. Protein Eng. 2002 Jun;15(6):503-12 [PMID: 12082169]
  11. Mol Microbiol. 2002 Sep;45(6):1527-40 [PMID: 12354223]
  12. Glycobiology. 2003 Apr;13(4):17R-27R [PMID: 12626396]
  13. Annu Rev Microbiol. 2003;57:441-66 [PMID: 14527287]
  14. J Bacteriol. 2004 Feb;186(4):895-902 [PMID: 14761983]
  15. Infect Immun. 2004 Mar;72(3):1733-45 [PMID: 14977982]
  16. J Bacteriol. 2004 Mar;186(6):1683-93 [PMID: 14996799]
  17. Genome Res. 2004 Jun;14(6):1188-90 [PMID: 15173120]
  18. J Biol Chem. 2004 Jul 9;279(28):28835-43 [PMID: 15102847]
  19. Mol Microbiol. 1990 Nov;4(11):1911-9 [PMID: 2082148]
  20. Genes Dev. 1992 Dec;6(12B):2646-54 [PMID: 1340475]
  21. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):2790-4 [PMID: 8610119]
  22. J Bacteriol. 1996 Sep;178(17):5071-9 [PMID: 8752321]
  23. J Bacteriol. 1997 Dec;179(23):7251-6 [PMID: 9393687]
  24. Tuber Lung Dis. 1997;78(1):3-12 [PMID: 9666957]
  25. J Biol Chem. 2005 Apr 15;280(15):14524-9 [PMID: 15703182]
  26. IUBMB Life. 2005 Mar;57(3):149-59 [PMID: 16036577]
  27. J Bacteriol. 2005 Oct;187(19):6603-11 [PMID: 16166521]
  28. Biochem Biophys Res Commun. 2005 Nov 25;337(3):757-64 [PMID: 16212936]
  29. Trends Microbiol. 2005 Nov;13(11):505-9 [PMID: 16140533]
  30. Bioinformatics. 2005 Nov 15;21(22):4187-9 [PMID: 16109747]
  31. Tuberculosis (Edinb). 2005 Sep-Nov;85(5-6):347-55 [PMID: 16263329]
  32. Mol Microbiol. 2006 Apr;60(2):312-30 [PMID: 16573683]
  33. Microbiology. 2006 Jun;152(Pt 6):1591-600 [PMID: 16735723]
  34. Antimicrob Agents Chemother. 2006 Aug;50(8):2836-41 [PMID: 16870781]
  35. FEMS Microbiol Rev. 2006 Nov;30(6):926-41 [PMID: 17064287]
  36. J Bacteriol. 2007 Jun;189(11):4234-42 [PMID: 17384187]
  37. Infect Genet Evol. 2007 Jul;7(4):424-32 [PMID: 17292677]
  38. Anal Biochem. 2007 Nov 1;370(1):87-97 [PMID: 17643383]
  39. J Bacteriol. 2007 Dec;189(24):8973-81 [PMID: 17921287]
  40. Curr Microbiol. 2008 Jun;56(6):574-80 [PMID: 18324436]
  41. Microbiology. 2008 Sep;154(Pt 9):2786-95 [PMID: 18757812]
  42. J Bacteriol. 2009 Apr;191(8):2888-93 [PMID: 19218386]

MeSH Term

Bacterial Proteins
Gene Expression Regulation, Bacterial
Hot Temperature
Mycobacterium smegmatis
Oligonucleotide Array Sequence Analysis
Oxidative Stress
Polymerase Chain Reaction
Promoter Regions, Genetic
Regulon
Sigma Factor

Chemicals

Bacterial Proteins
FliA protein, Bacteria
Sigma Factor

Word Cloud

Created with Highcharts 10.0.0SigFgenessmegmatisexpressionstressfactorMycobacteriumphasedataDeltasigFstrainheatoxidativesigmastudyidentifiedregulonpromoterconsensusstationarySigF-dependentMproposedirectcontrolincreasedsusceptibilityinvolvedcatalasebiosynthesisadaptationalternativehighlyconservedamongspeciesgenususingwhole-genomemicroarrayanalysestotal64exponential124dependentP<001>2-foldchangeexperimentalrevealGTTT-N15-17-GGGTA130potential50%exhibitedreducedpreviouslyreportedindicatemolecularbasisphenotypesobservedseveralpurportedlydefensenamelyheme-containingmanganese-containingsuperoxidedismutasestarvation-inducedDNA-protectingproteinMsDps1carotenoidisorenieratenesuggestregulatesthermoprotectanttrehalosewelluptakesystemosmoregulatorycompoundsmayexplainregulatoryproteinsSigH3PhoPWhiB1WhiB4possiblefournovelanti-sigmaantagonistsposttranslationalregulationemphasizesimportancestationary-phaseresponsemycobacteriarevealsroles

Similar Articles

Cited By