Platelet retraction force measurements using flexible post force sensors.

Xin M Liang, Sangyoon J Han, Jo-Anna Reems, Dayong Gao, Nathan J Sniadecki
Author Information
  1. Xin M Liang: Department of Mechanical Engineering, University of Washington, Seattle, USA.

Abstract

Platelets play an important role in hemostasis by forming a thrombotic plug that seals the vessel wall and promotes vascular healing. After platelets adhere and aggregate at the wound site, their next step is to generate contractile forces through the coordination of physicochemical interactions between actin, myosin, and alpha(IIb)beta(3) integrin receptors that retract the thrombus' size and strengthen its adhesion to the exposed matrix. Although platelet contractile forces (PCF) are a definitive feature of hemostasis and thrombosis, there are few approaches that can directly measure them. In this study, we describe the development of an approach to measure PCF in Microthrombi using a microscopic flexible post force sensor array. Quasi-static measurements and live microscopic imaging of thrombin-activated platelets on the posts were conducted to assay the development of PCF to various hemostatic conditions. Microthrombi were observed to produce forces that monotonically increased with thrombin concentration and activation time, but forces subsided when thrombin was removed. PCF results were statistically similar on arrays of posts printed with fibronectin or fibrinogen. PCF measurements were combined with clot volume measurements to determine that the average force per platelet was 2.1 +/- 0.1 nN after 60 min, which is significantly higher than what has been measured with previous approaches. Overall, the flexible post arrays for PCF measurements are a promising approach for evaluating platelet functionality, platelet physiology and pathology, the impacts of different matrices or agonists on hemostatic responses, and in providing critical information regarding platelet activity that can guide new hemostatic or thrombotic strategies.

References

  1. J Biol Chem. 1992 Jun 5;267(16):11300-6 [PMID: 1597464]
  2. Blood. 2008 Jan 15;111(2):596-604 [PMID: 17925492]
  3. Vox Sang. 2005 Apr;88(3):153-63 [PMID: 15787725]
  4. Cell Biochem Biophys. 2003;38(1):55-78 [PMID: 12663942]
  5. J Thromb Haemost. 2007 Jul;5 Suppl 1:116-24 [PMID: 17635717]
  6. Proc Natl Acad Sci U S A. 2005 Feb 15;102(7):2390-5 [PMID: 15695588]
  7. J Cell Biol. 2002 Feb 18;156(4):609-15 [PMID: 11839769]
  8. J Cell Sci. 1998 Aug;111 ( Pt 15):2181-8 [PMID: 9664039]
  9. Anesth Analg. 2008 May;106(5):1366-75 [PMID: 18420846]
  10. Mech Chem Biosyst. 2005;2(1):1-16 [PMID: 16708468]
  11. Methods Cell Biol. 2007;83:313-28 [PMID: 17613314]
  12. Anesth Analg. 2005 Jun;100(6):1781-1785 [PMID: 15920213]
  13. Am J Physiol. 1985 Sep;249(3 Pt 1):C279-87 [PMID: 3898863]
  14. Vasc Endovascular Surg. 2002 Nov-Dec;36(6):473-80 [PMID: 12476239]
  15. Nat Rev Mol Cell Biol. 2001 Nov;2(11):793-805 [PMID: 11715046]
  16. J Cell Biol. 2002 Nov 25;159(4):695-705 [PMID: 12446745]
  17. J Exp Med. 2007 Dec 24;204(13):3103-11 [PMID: 18086863]
  18. J Cell Biol. 2001 Jun 11;153(6):1175-86 [PMID: 11402062]
  19. Cell Motil. 1982;2(5):445-55 [PMID: 6891618]
  20. Nature. 1973 Nov 2;246(5427):36-7 [PMID: 4585844]
  21. J Clin Invest. 2005 Dec;115(12):3385-92 [PMID: 16322784]
  22. J Thromb Haemost. 2007 Oct;5(10):2136-45 [PMID: 17645784]
  23. Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1484-9 [PMID: 12552122]
  24. Nat Med. 2008 Mar;14(3):325-30 [PMID: 18278053]
  25. Blood. 1998 Apr 15;91(8):2645-57 [PMID: 9531572]
  26. Anesth Analg. 1995 Mar;80(3):459-65 [PMID: 7864408]
  27. Methods Achiev Exp Pathol. 1979;9:40-86 [PMID: 368520]
  28. Blood. 2008 Jul 1;112(1):90-9 [PMID: 18310501]
  29. Blood Rev. 2005 Mar;19(2):111-23 [PMID: 15603914]
  30. Blood. 2007 Nov 1;110(9):3183-91 [PMID: 17664350]
  31. Rev Sci Instrum. 2008 Apr;79(4):044302 [PMID: 18447536]
  32. Nat Rev Drug Discov. 2003 Jan;2(1):15-28 [PMID: 12509756]
  33. Cell Motil Cytoskeleton. 1991;20(3):190-202 [PMID: 1773447]
  34. Science. 2009 Jan 30;323(5914):638-41 [PMID: 19179532]
  35. Proc Natl Acad Sci U S A. 2007 Sep 11;104(37):14553-8 [PMID: 17804810]
  36. J Cell Biol. 1982 Jun;93(3):775-87 [PMID: 6889599]
  37. Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7450-4 [PMID: 7543682]
  38. Lancet. 2000 Apr 29;355(9214):1531-9 [PMID: 10801186]
  39. Br J Pharmacol. 2003 Feb;138(4):574-83 [PMID: 12598411]
  40. Blood. 2007 Jun 15;109(12):5087-95 [PMID: 17311994]
  41. J Lab Clin Med. 1996 Jul;128(1):83-8 [PMID: 8759939]
  42. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3280-3 [PMID: 7682697]
  43. Am J Med Sci. 1991 Jul;302(1):13-8 [PMID: 2063881]
  44. Chest. 2003 Sep;124(3 Suppl):18S-25S [PMID: 12970120]

Grants

  1. R21 HL097284/NHLBI NIH HHS
  2. HL097284/NHLBI NIH HHS

MeSH Term

Blood Platelets
Cells, Cultured
Equipment Design
Equipment Failure Analysis
Humans
Image Interpretation, Computer-Assisted
Microscopy, Confocal
Platelet Activation
Stress, Mechanical
Thrombin
Transducers

Chemicals

Thrombin

Word Cloud

Created with Highcharts 10.0.0PCFplateletmeasurementsforcesforceflexibleposthemostatichemostasisthromboticplateletscontractileapproachescanmeasuredevelopmentapproachusingmicroscopicpoststhrombinarrays1PlateletsplayimportantroleformingplugsealsvesselwallpromotesvascularhealingadhereaggregatewoundsitenextstepgeneratecoordinationphysicochemicalinteractionsactinmyosinalphaIIbbeta3integrinreceptorsretractthrombus'sizestrengthenadhesionexposedmatrixAlthoughdefinitivefeaturethrombosisdirectlystudydescribemicrothrombisensorarrayQuasi-staticliveimagingthrombin-activatedconductedassayvariousconditionsMicrothrombiobservedproducemonotonicallyincreasedconcentrationactivationtimesubsidedremovedresultsstatisticallysimilarprintedfibronectinfibrinogencombinedclotvolumedetermineaverageper2+/-0nN60minsignificantlyhighermeasuredpreviousOverallpromisingevaluatingfunctionalityphysiologypathologyimpactsdifferentmatricesagonistsresponsesprovidingcriticalinformationregardingactivityguidenewstrategiesPlateletretractionsensors

Similar Articles

Cited By (41)