Feature-based morphometry.

Matthew Toews, William M Wells, D Louis Collins, Tal Arbel
Author Information
  1. Matthew Toews: Brigham and Women's Hospital, Harvard Medical School, USA. mt@bwh.harvard.edu

Abstract

This paper presents feature-based morphometry (FBM), a new, fully data-driven technique for identifying group-related differences in volumetric imagery. In contrast to most morphometry methods which assume one-to-one correspondence between all subjects, FBM models images as a collage of distinct, localized image features which may not be present in all subjects. FBM thus explicitly accounts for the case where the same anatomical tissue cannot be reliably identified in all subjects due to disease or anatomical variability. A probabilistic model describes features in terms of their appearance, geometry, and relationship to subgroups of a population, and is automatically learned from a set of subject images and group labels. Features identified indicate group-related anatomical structure that can potentially be used as disease biomarkers or as a basis for computer-aided diagnosis. Scale-invariant image features are used, which reflect generic, salient patterns in the image. Experiments validate FBM clinically in the analysis of normal (NC) and Alzheimer's (AD) brain images using the freely available OASIS database. FBM automatically identifies known structural differences between NC and AD subjects in a fully data-driven fashion, and obtains an equal error classification rate of 0.78 on new subjects.

References

  1. IEEE Trans Med Imaging. 2003 Sep;22(9):1120-30 [PMID: 12956267]
  2. Neuroimage. 2009 Apr 15;45(3):656-61 [PMID: 19280688]
  3. Neuroimage. 2001 Sep;14(3):595-606 [PMID: 11506533]
  4. Neuroimage. 2000 Jun;11(6 Pt 1):805-21 [PMID: 10860804]
  5. IEEE Trans Med Imaging. 2008 Apr;27(4):509-20 [PMID: 18390347]
  6. IEEE Trans Image Process. 2009 Sep;18(9):2012-21 [PMID: 19502129]
  7. Anat Embryol (Berl). 2001 Oct;204(4):267-82 [PMID: 11720233]
  8. Neuroimage. 2004 Sep;23(1):17-20 [PMID: 15325347]
  9. IEEE Trans Med Imaging. 2004 Aug;23(8):968-82 [PMID: 15338731]
  10. Biol Cybern. 1984;50(5):363-70 [PMID: 6477978]
  11. Spat Vis. 1987;2(4):273-93 [PMID: 3154952]
  12. IEEE Trans Med Imaging. 2007 Apr;26(4):497-508 [PMID: 17427737]
  13. Neuroimage. 2001 Dec;14(6):1238-43 [PMID: 11707080]
  14. Neuroimage. 2004 Jan;21(1):46-57 [PMID: 14741641]
  15. Neuroimage. 2004 Oct;23(2):724-38 [PMID: 15488422]
  16. Neuroimage. 2001 Dec;14(6):1454-62 [PMID: 11707101]
  17. IEEE Trans Med Imaging. 2006 May;25(5):626-39 [PMID: 16689266]
  18. J Cogn Neurosci. 2007 Sep;19(9):1498-507 [PMID: 17714011]

Grants

  1. P41 RR013218/NCRR NIH HHS
  2. P41 RR13218/NCRR NIH HHS

MeSH Term

Algorithms
Alzheimer Disease
Brain
Computer Simulation
Diffusion Magnetic Resonance Imaging
Humans
Image Enhancement
Image Interpretation, Computer-Assisted
Imaging, Three-Dimensional
Models, Anatomic
Models, Biological
Pattern Recognition, Automated
Reproducibility of Results
Sensitivity and Specificity

Word Cloud

Created with Highcharts 10.0.0FBMsubjectsmorphometryimagesimagefeaturesanatomicalnewfullydata-drivengroup-relateddifferencesidentifieddiseaseautomaticallyusedNCADpaperpresentsfeature-basedtechniqueidentifyingvolumetricimagerycontrastmethodsassumeone-to-onecorrespondencemodelscollagedistinctlocalizedmaypresentthusexplicitlyaccountscasetissuereliablyduevariabilityprobabilisticmodeldescribestermsappearancegeometryrelationshipsubgroupspopulationlearnedsetsubjectgrouplabelsFeaturesindicatestructurecanpotentiallybiomarkersbasiscomputer-aideddiagnosisScale-invariantreflectgenericsalientpatternsExperimentsvalidateclinicallyanalysisnormalAlzheimer'sbrainusingfreelyavailableOASISdatabaseidentifiesknownstructuralfashionobtainsequalerrorclassificationrate078Feature-based

Similar Articles

Cited By

No available data.