Neural basis of global resting-state fMRI activity.

Marieke L Schölvinck, Alexander Maier, Frank Q Ye, Jeff H Duyn, David A Leopold
Author Information
  1. Marieke L Schölvinck: Unit on Cognitive Neurophysiology and Imaging, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.

Abstract

Functional MRI (fMRI) has uncovered widespread hemodynamic fluctuations in the brain during rest. Recent electroencephalographic work in humans and microelectrode recordings in anesthetized monkeys have shown this activity to be correlated with slow changes in neural activity. Here we report that the spontaneous fluctuations in the local field potential (LFP) measured from a single cortical site in monkeys at rest exhibit widespread, positive correlations with fMRI signals over nearly the entire cerebral cortex. This correlation was especially consistent in a band of upper gamma-range frequencies (40-80 Hz), for which the hemodynamic signal lagged the neural signal by 6-8 s. A strong, positive correlation was also observed in a band of lower frequencies (2-15 Hz), albeit with a lag closer to zero. The global pattern of correlation with spontaneous fMRI fluctuations was similar whether the LFP signal was measured in occipital, parietal, or frontal electrodes. This coupling was, however, dependent on the monkey's behavioral state, being stronger and anticipatory when the animals' eyes were closed. These results indicate that the often discarded global component of fMRI fluctuations measured during the resting state is tightly coupled with underlying neural activity.

References

  1. Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):2035-40 [PMID: 19188601]
  2. Philos Trans R Soc Lond B Biol Sci. 2002 Aug 29;357(1424):1003-37 [PMID: 12217171]
  3. Trends Neurosci. 2004 Aug;27(8):489-95 [PMID: 15271497]
  4. Cereb Cortex. 2003 Apr;13(4):422-33 [PMID: 12631571]
  5. Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9673-8 [PMID: 15976020]
  6. Nat Neurosci. 2008 Sep;11(9):1100-8 [PMID: 19160509]
  7. J Neurosci. 2004 Aug 4;24(31):6862-70 [PMID: 15295020]
  8. Rev Neurosci. 2003;14(1-2):195-205 [PMID: 12929926]
  9. Neuroimage. 2009 Feb 1;44(3):893-905 [PMID: 18976716]
  10. J Cereb Blood Flow Metab. 2001 Oct;21(10):1133-45 [PMID: 11598490]
  11. J Neurophysiol. 1995 Nov;74(5):2100-25 [PMID: 8592200]
  12. Neuroreport. 2005 Feb 28;16(3):285-8 [PMID: 15706237]
  13. Neuroimage. 2009 Mar 1;45(1):160-8 [PMID: 19028588]
  14. Neuroimage. 2009 May 1;45(4):1047-54 [PMID: 18801442]
  15. Neuroimage. 2006 Jul 15;31(4):1536-48 [PMID: 16632379]
  16. J Neurosci. 2009 May 6;29(18):5897-909 [PMID: 19420256]
  17. Science. 2005 Aug 5;309(5736):948-51 [PMID: 16081740]
  18. Nat Neurosci. 2008 Oct;11(10):1193-200 [PMID: 18711393]
  19. Neuroimage. 2010 Jan 1;49(1):823-34 [PMID: 19631277]
  20. Nature. 2009 Jan 22;457(7228):475-9 [PMID: 19158795]
  21. PLoS Biol. 2008 Jul 1;6(7):e159 [PMID: 18597554]
  22. J Neurophysiol. 1995 May;73(5):2072-93 [PMID: 7623099]
  23. J Neurosci. 2008 May 28;28(22):5696-709 [PMID: 18509031]
  24. J Neurophysiol. 2008 Oct;100(4):1740-8 [PMID: 18701759]
  25. Magn Reson Imaging. 2009 Oct;27(8):1019-29 [PMID: 19375260]
  26. Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13848-53 [PMID: 16945915]
  27. Magn Reson Med. 1995 Oct;34(4):537-41 [PMID: 8524021]
  28. Science. 1996 Sep 27;273(5283):1868-71 [PMID: 8791593]
  29. Philos Trans R Soc Lond B Biol Sci. 2005 May 29;360(1457):1001-13 [PMID: 16087444]
  30. Curr Biol. 2007 Aug 7;17(15):1275-85 [PMID: 17686438]
  31. Hum Brain Mapp. 2008 Jul;29(7):848-57 [PMID: 18412133]
  32. Nature. 2007 May 3;447(7140):83-6 [PMID: 17476267]
  33. Trends Neurosci. 2002 Dec;25(12):621-5 [PMID: 12446129]
  34. Cereb Cortex. 2010 Apr;20(4):953-65 [PMID: 19684249]
  35. Cereb Cortex. 2008 Dec;18(12):2735-47 [PMID: 18400794]
  36. Nat Neurosci. 2006 Apr;9(4):569-77 [PMID: 16547508]
  37. Neuroimage. 2003 Jun;19(2 Pt 1):466-70 [PMID: 12814595]
  38. Proc Natl Acad Sci U S A. 2009 Mar 17;106(11):4489-94 [PMID: 19255447]
  39. Proc Natl Acad Sci U S A. 2009 Jul 7;106(27):11376-81 [PMID: 19549821]
  40. Proc Natl Acad Sci U S A. 2008 Oct 14;105(41):16039-44 [PMID: 18843113]
  41. Nat Neurosci. 2007 Oct;10(10):1308-12 [PMID: 17828254]
  42. Magn Reson Med. 2008 May;59(5):1021-9 [PMID: 18429028]
  43. Hum Brain Mapp. 2008 Jul;29(7):751-61 [PMID: 18465799]
  44. Hum Brain Mapp. 1999;8(2-3):151-6 [PMID: 10524607]
  45. J Magn Reson Imaging. 2009 Aug;30(2):384-93 [PMID: 19629982]
  46. Proc Natl Acad Sci U S A. 2006 Jun 27;103(26):10046-51 [PMID: 16788060]
  47. Neuroimage. 2009 Jan 15;44(2):448-54 [PMID: 18835582]
  48. Nature. 2001 Jul 12;412(6843):150-7 [PMID: 11449264]
  49. Neuroimage. 2004 Apr;21(4):1652-64 [PMID: 15050588]
  50. Nat Rev Neurosci. 2007 Sep;8(9):700-11 [PMID: 17704812]
  51. Annu Rev Neurosci. 2006;29:449-76 [PMID: 16776593]
  52. Neuroimage. 2004 Oct;23(2):752-63 [PMID: 15488425]
  53. J Neurophysiol. 2009 Jun;101(6):3270-83 [PMID: 19339462]
  54. Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):253-8 [PMID: 12506194]
  55. Hum Brain Mapp. 2008 Jul;29(7):839-47 [PMID: 18219620]
  56. AJNR Am J Neuroradiol. 2000 Oct;21(9):1636-44 [PMID: 11039342]
  57. Neuroimage. 2004 May;22(1):360-6 [PMID: 15110027]

Grants

  1. /Wellcome Trust

MeSH Term

Animals
Cerebral Cortex
Echo-Planar Imaging
Electrophysiological Phenomena
Female
Humans
Macaca mulatta
Magnetic Resonance Imaging
Rest
Signal Processing, Computer-Assisted

Word Cloud

Created with Highcharts 10.0.0fMRIfluctuationsactivityneuralmeasuredcorrelationsignalglobalwidespreadhemodynamicrestmonkeysspontaneousLFPpositivebandfrequenciesHzstateFunctionalMRIuncoveredbrainRecentelectroencephalographicworkhumansmicroelectroderecordingsanesthetizedshowncorrelatedslowchangesreportlocalfieldpotentialsinglecorticalsiteexhibitcorrelationssignalsnearlyentirecerebralcortexespeciallyconsistentuppergamma-range40-80lagged6-8sstrongalsoobservedlower2-15albeitlagcloserzeropatternsimilarwhetheroccipitalparietalfrontalelectrodescouplinghoweverdependentmonkey'sbehavioralstrongeranticipatoryanimals'eyesclosedresultsindicateoftendiscardedcomponentrestingtightlycoupledunderlyingNeuralbasisresting-state

Similar Articles

Cited By