Albumin uptake in OK cells exposed to rotenone: a model for studying the effects of mitochondrial dysfunction on endocytosis in the proximal tubule?

A M Hall, M Campanella, A Loesch, M R Duchen, R J Unwin
Author Information
  1. A M Hall: Centre for Nephrology, University of London, London , UK. andrew.hall@ucl.ac.uk

Abstract

BACKGROUND: The renal proximal tubule (PT) is clinically vulnerable to mitochondrial dysfunction; sub-lethal injury can lead to the Fanconi syndrome, with elevated urinary excretion of low-molecular-weight proteins. As the mechanism that couples mitochondrial dysfunction to impaired PT low-molecular weight protein uptake is unknown, we investigated the effect of respiratory chain (RC) inhibitors on endocytosis of FITC-albumin in PT-derived OK cells.
METHODS: Uptake of FITC-albumin was quantified using confocal microscopy. Cytosolic ATP levels were measured in real time using both luciferin/luciferase assays and measurements of free [Mg(2+)]. Reactive oxygen species production was measured using mitosox.
RESULTS: RC blockade produced only a small decrease in cytosolic ATP levels and had minimal effect on FITC-albumin uptake. Inhibition of glycolysis caused a much bigger decrease in both cytosolic ATP levels and FITC-albumin endocytosis. Rotenone led to higher rates of reactive oxygen species production than other RC inhibitors. Rotenone also caused widespread structural damage on electron microscopy, which was mimicked by colchicine and prevented by taxol; consistent with inhibition of microtubule polymerisation as the underlying mechanism.
CONCLUSIONS: Endocytosis of FITC-albumin is ATP-dependent in OK cells, but the cells are very glycolytic and therefore represent a poor metabolic model of the PT. Rotenone has toxic extra-mitochondrial structural effects.

References

  1. Am J Physiol. 1989 Dec;257(6 Pt 1):E895-902 [PMID: 2558575]
  2. Biochim Biophys Acta. 2003 Aug 18;1605(1-3):15-20 [PMID: 12907297]
  3. J Biol Chem. 1994 Jan 7;269(1):21-4 [PMID: 8276796]
  4. J Cell Physiol. 2008 Jan;214(1):273-80 [PMID: 17620322]
  5. J Neurochem. 2007 Oct;103(1):303-11 [PMID: 17587308]
  6. Free Radic Res. 2006 Feb;40(2):167-74 [PMID: 16390826]
  7. Am J Pathol. 1986 Mar;122(3):462-8 [PMID: 3953769]
  8. Am J Kidney Dis. 2005 Sep;46(3):e41-6 [PMID: 16129198]
  9. Biochim Biophys Acta. 1991 Feb 19;1091(3):324-8 [PMID: 2001415]
  10. Am J Physiol Renal Physiol. 2005 Jun;288(6):F1084-9 [PMID: 15883167]
  11. Am J Physiol. 1997 May;272(5 Pt 2):F668-77 [PMID: 9176379]
  12. Mol Pharmacol. 1993 Aug;44(2):364-70 [PMID: 8394993]
  13. Kidney Int. 2002 Sep;62(3):745-56 [PMID: 12164855]
  14. Pediatr Nephrol. 1996 Jun;10(3):368-73 [PMID: 8792408]
  15. J Cell Biol. 1990 Dec;111(6 Pt 1):2307-18 [PMID: 2126013]
  16. J Bioenerg Biomembr. 2005 Feb;37(1):1-15 [PMID: 15906144]
  17. J Biol Chem. 1999 Jan 29;274(5):2625-30 [PMID: 9915790]
  18. Methods Enzymol. 2003;361:353-89 [PMID: 12624920]
  19. Nephron Physiol. 2007;105(1):p1-10 [PMID: 17095876]
  20. Kidney Int. 2000 Oct;58(4):1523-33 [PMID: 11012887]
  21. J Histochem Cytochem. 1988 Sep;36(9):1147-52 [PMID: 2457047]
  22. Proc Soc Exp Biol Med. 1991 Apr;196(4):428-31 [PMID: 1672565]
  23. In Vitro Cell Dev Biol Anim. 1994 Jan;30A(1):30-4 [PMID: 8193771]
  24. J Clin Invest. 1991 Mar;87(3):955-61 [PMID: 1847941]
  25. J Biol Chem. 1995 Jun 23;270(25):15242-9 [PMID: 7797509]
  26. J Am Soc Nephrol. 2004 Sep;15(9):2258-65 [PMID: 15339975]
  27. Biochem Soc Trans. 2003 Dec;31(Pt 6):1095-105 [PMID: 14641005]
  28. Am J Kidney Dis. 2005 May;45(5):804-17 [PMID: 15861345]
  29. J Physiol. 1996 Oct 1;496 ( Pt 1):111-28 [PMID: 8910200]
  30. J Am Soc Nephrol. 2009 Jun;20(6):1293-302 [PMID: 19470684]
  31. Cancer Res. 2006 Sep 15;66(18):8927-30 [PMID: 16982728]
  32. Toxicol Lett. 2009 Mar 10;185(2):132-41 [PMID: 19136048]
  33. Physiol Rev. 1998 Oct;78(4):1109-29 [PMID: 9790571]
  34. EMBO J. 1990 Nov;9(11):3477-87 [PMID: 2209555]
  35. Pediatr Nephrol. 2004 Jul;19(7):714-21 [PMID: 15146321]
  36. J Am Soc Nephrol. 1995 Aug;6(2):269-72 [PMID: 7579095]
  37. J Cell Biol. 2001 Oct 15;155(2):291-300 [PMID: 11604424]
  38. Cell Physiol Biochem. 1999;9(3):150-72 [PMID: 10494029]
  39. Mol Aspects Med. 2004 Aug;25(4):365-451 [PMID: 15302203]
  40. Exp Cell Res. 1974 Mar 30;85(1):41-6 [PMID: 4857086]
  41. Biochem J. 2009 Jan 1;417(1):1-13 [PMID: 19061483]
  42. Trends Biochem Sci. 2009 Jul;34(7):343-50 [PMID: 19559621]
  43. J Clin Invest. 2003 Apr;111(7):1057-64 [PMID: 12671055]
  44. Pediatr Nephrol. 2005 Sep;20(9):1299-305 [PMID: 15977024]
  45. Kidney Int. 1998 Oct;54(4):1197-205 [PMID: 9767535]
  46. Am J Physiol. 1996 Sep;271(3 Pt 2):F508-20 [PMID: 8853412]
  47. Nature. 2005 Jul 21;436(7049):420-3 [PMID: 16034421]
  48. Exp Cell Res. 1988 Jan;174(1):168-76 [PMID: 3335222]
  49. Eur J Cell Biol. 1995 May;67(1):57-72 [PMID: 7543847]
  50. Am J Physiol. 1982 Aug;243(2):F133-40 [PMID: 7114212]
  51. Biochem Soc Trans. 2008 Oct;36(Pt 5):976-80 [PMID: 18793173]
  52. Nature. 2005 Jul 21;436(7049):424-7 [PMID: 16034422]
  53. Am J Physiol. 1995 May;268(5 Pt 2):F899-906 [PMID: 7539587]
  54. AIDS. 2005 May 20;19(8):844-5 [PMID: 15867505]
  55. Am J Kidney Dis. 2003 Feb;41(2):292-309 [PMID: 12552490]
  56. Science. 1987 Oct 30;238(4827):638-44 [PMID: 3672117]
  57. Annu Rev Physiol. 1996;58:427-45 [PMID: 8815802]
  58. Am J Physiol. 1985 Apr;248(4 Pt 2):F522-6 [PMID: 3985159]
  59. Biochim Biophys Acta. 1978 Nov 1;543(4):590-4 [PMID: 568944]

Grants

  1. G0601943/Medical Research Council
  2. /Wellcome Trust

MeSH Term

Adenosine Triphosphate
Animals
Cell Line, Transformed
Cell Survival
Colchicine
Cyanides
Dextrans
Electron Transport
Endocytosis
Epithelial Cells
Fanconi Syndrome
Fluorescein-5-isothiocyanate
Glycolysis
Kidney Tubules, Proximal
Mitochondria
Opossums
Paclitaxel
Pyridines
Reactive Oxygen Species
Rotenone
Serum Albumin

Chemicals

Cyanides
Dextrans
FITC-albumin
Pyridines
Reactive Oxygen Species
Serum Albumin
fluorescein isothiocyanate dextran
Rotenone
Adenosine Triphosphate
Fluorescein-5-isothiocyanate
Paclitaxel
Colchicine

Word Cloud

Created with Highcharts 10.0.0FITC-albumincellsPTmitochondrialdysfunctionuptakeRCendocytosisOKusingATPlevelsRotenoneproximalmechanismeffectinhibitorsmicroscopymeasuredoxygenspeciesproductiondecreasecytosoliccausedstructuralmodeleffectsBACKGROUND:renaltubuleclinicallyvulnerablesub-lethalinjurycanleadFanconisyndromeelevatedurinaryexcretionlow-molecular-weightproteinscouplesimpairedlow-molecularweightproteinunknowninvestigatedrespiratorychainPT-derivedMETHODS:UptakequantifiedconfocalCytosolicrealtimeluciferin/luciferaseassaysmeasurementsfree[Mg2+]ReactivemitosoxRESULTS:blockadeproducedsmallminimalInhibitionglycolysismuchbiggerledhigherratesreactivealsowidespreaddamageelectronmimickedcolchicinepreventedtaxolconsistentinhibitionmicrotubulepolymerisationunderlyingCONCLUSIONS:EndocytosisATP-dependentglycolyticthereforerepresentpoormetabolictoxicextra-mitochondrialAlbuminexposedrotenone:studyingtubule?

Similar Articles

Cited By