Eef1a2 promotes cell growth, inhibits apoptosis and activates JAK/STAT and AKT signaling in mouse plasmacytomas.

Zhaoyang Li, Chen-Feng Qi, Dong-Mi Shin, Adriana Zingone, Helen J Newbery, Alexander L Kovalchuk, Catherine M Abbott, Herbert C Morse
Author Information
  1. Zhaoyang Li: Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA.

Abstract

BACKGROUND: The canonical function of EEF1A2, normally expressed only in muscle, brain, and heart, is in translational elongation, but recent studies suggest a non-canonical function as a proto-oncogene that is overexpressed in a variety of solid tumors including breast and ovary. Transcriptional profiling of a spectrum of primary mouse B cell lineage neoplasms showed that transcripts encoding EEF1A2 were uniquely overexpressed in plasmacytomas (PCT), tumors of mature plasma cells. Cases of human multiple myeloma expressed significantly higher levels of EEF1A2 transcripts than normal bone marrow plasma cells. High-level expression was also a feature of a subset of cell lines developed from mouse PCT and from the human MM.
METHODOLOGY/PRINCIPAL FINDINGS: Heightened expression of EEF1A2 was not associated with increased copy number or coding sequence mutations. shRNA-mediated knockdown of Eef1a2 transcripts and protein was associated with growth inhibition due to delayed G1-S progression, and effects on apoptosis that were seen only under serum-starved conditions. Transcriptional profiles and western blot analyses of knockdown cells revealed impaired JAK/STAT and PI3K/AKT signaling suggesting their contributions to EEF1A2-mediated effects on PCT induction or progression.
CONCLUSIONS/SIGNIFICANCE: EEF1A2 may play contribute to the induction or progression of some PCT and a small percentage of MM. Eef1a2 could also prove to be a useful new marker for a subset of MM and, ultimately, a possible target for therapy.

References

  1. Br J Cancer. 2007 May 21;96(10):1613-20 [PMID: 17437010]
  2. Blood. 2009 May 28;113(22):5412-7 [PMID: 19179464]
  3. Cancer Res. 2007 Mar 15;67(6):2439-47 [PMID: 17363561]
  4. J Pathol. 2010 May;221(1):106-16 [PMID: 20217872]
  5. J Exp Med. 2000 Oct 16;192(8):1183-90 [PMID: 11034608]
  6. Curr Cancer Drug Targets. 2006 Dec;6(8):671-9 [PMID: 17168672]
  7. BMC Cancer. 2005 Sep 12;5:113 [PMID: 16156888]
  8. Mol Cells. 1999 Dec 31;9(6):631-7 [PMID: 10672930]
  9. Am J Pathol. 1999 Mar;154(3):805-12 [PMID: 10079258]
  10. J Exp Med. 2004 Dec 6;200(11):1467-78 [PMID: 15583018]
  11. J Biol Chem. 1992 Nov 25;267(33):24064-8 [PMID: 1385435]
  12. Carcinogenesis. 1992 Oct;13(10):1681-97 [PMID: 1423827]
  13. Cancer Cell. 2007 Aug;12(2):131-44 [PMID: 17692805]
  14. Nat Struct Mol Biol. 2005 Sep;12(9):772-8 [PMID: 16116436]
  15. Eur J Biochem. 2002 Nov;269(22):5360-8 [PMID: 12423334]
  16. Breast Cancer Res Treat. 2007 Mar;102(1):31-41 [PMID: 16897428]
  17. Leuk Res. 2001 Aug;25(8):719-33 [PMID: 11397479]
  18. Int J Cancer. 2008 Oct 1;123(7):1573-85 [PMID: 18649364]
  19. J Biol Chem. 2002 Feb 15;277(7):5418-25 [PMID: 11724805]
  20. Mol Cell Biol. 2005 Jan;25(1):403-13 [PMID: 15601860]
  21. Mol Cell Biol. 2008 Jul;28(14):4549-61 [PMID: 18474610]
  22. Immunity. 1999 Jan;10(1):105-15 [PMID: 10023775]
  23. Adv Immunol. 2003;81:97-121 [PMID: 14711054]
  24. J Cell Biochem. 2007 Feb 1;100(2):267-78 [PMID: 16888816]
  25. Biochimie. 2007 Dec;89(12):1544-52 [PMID: 17825975]
  26. Cancer Sci. 2006 Jan;97(1):64-71 [PMID: 16367923]
  27. Oncogene. 2007 May 10;26(21):3027-40 [PMID: 17130842]
  28. Nature. 2006 Mar 23;440(7083):556-60 [PMID: 16554823]
  29. Genome Res. 2003 Jul;13(7):1719-27 [PMID: 12840047]
  30. BMC Genomics. 2007 Aug 31;8:302 [PMID: 17764563]
  31. Nat Med. 2005 Jun;11(6):623-9 [PMID: 15895073]
  32. Biosci Biotechnol Biochem. 2002 Jan;66(1):1-21 [PMID: 11866090]
  33. Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4463-8 [PMID: 9539760]
  34. FEBS Lett. 1994 Dec 12;356(1):89-93 [PMID: 7988728]
  35. Int J Biochem Cell Biol. 2008;40(1):63-71 [PMID: 17936057]
  36. Leuk Res. 2006 Feb;30(2):153-63 [PMID: 16122798]
  37. Eur J Biochem. 1993 Aug 1;215(3):549-54 [PMID: 8354261]
  38. Oncogene. 2006 Apr 27;25(18):2628-35 [PMID: 16369491]
  39. Biochem Biophys Res Commun. 2009 Feb 27;380(1):11-6 [PMID: 19138673]
  40. Trends Biochem Sci. 1995 May;20(5):169-70 [PMID: 7610475]
  41. J Exp Med. 2006 Jan 23;203(1):63-72 [PMID: 16380510]
  42. Exp Cell Res. 1995 Aug;219(2):589-97 [PMID: 7641810]
  43. Int J Cancer. 2008 Oct 15;123(8):1761-9 [PMID: 18661515]
  44. Cancer Res. 2008 Nov 15;68(22):9202-11 [PMID: 19010892]
  45. J Biol Chem. 2007 Jan 5;282(1):372-80 [PMID: 17088255]
  46. Am J Pathol. 2003 May;162(5):1449-61 [PMID: 12707028]
  47. Science. 2002 May 31;296(5573):1653-5 [PMID: 12040185]
  48. Cell. 1998 May 1;93(3):397-409 [PMID: 9590174]
  49. Nat Genet. 2002 Jul;31(3):301-5 [PMID: 12053177]

Grants

  1. /Wellcome Trust
  2. /Intramural NIH HHS

MeSH Term

Animals
Apoptosis
Bone Marrow Cells
Cell Cycle
Cell Line, Tumor
Cell Proliferation
Culture Media, Serum-Free
Enzyme Activation
Gene Expression Regulation, Neoplastic
Gene Knockdown Techniques
Gene Silencing
Humans
Janus Kinases
Mice
Monoclonal Gammopathy of Undetermined Significance
Multiple Myeloma
Peptide Elongation Factor 1
Plasma Cells
Plasmacytoma
Proto-Oncogene Mas
Proto-Oncogene Proteins c-akt
STAT Transcription Factors
Signal Transduction

Chemicals

Culture Media, Serum-Free
Eef1a2 protein, mouse
MAS1 protein, human
Peptide Elongation Factor 1
Proto-Oncogene Mas
STAT Transcription Factors
Janus Kinases
Proto-Oncogene Proteins c-akt

Word Cloud

Created with Highcharts 10.0.0EEF1A2PCTmousecelltranscriptscellsMMEef1a2progressionfunctionexpressedoverexpressedtumorsTranscriptionalplasmacytomasplasmahumanexpressionalsosubsetassociatedknockdowngrowtheffectsapoptosisJAK/STATsignalinginductionBACKGROUND:canonicalnormallymusclebrainhearttranslationalelongationrecentstudiessuggestnon-canonicalproto-oncogenevarietysolidincludingbreastovaryprofilingspectrumprimaryBlineageneoplasmsshowedencodinguniquelymatureCasesmultiplemyelomasignificantlyhigherlevelsnormalbonemarrowHigh-levelfeaturelinesdevelopedMETHODOLOGY/PRINCIPALFINDINGS:HeightenedincreasedcopynumbercodingsequencemutationsshRNA-mediatedproteininhibitionduedelayedG1-Sseenserum-starvedconditionsprofileswesternblotanalysesrevealedimpairedPI3K/AKTsuggestingcontributionsEEF1A2-mediatedCONCLUSIONS/SIGNIFICANCE:mayplaycontributesmallpercentageproveusefulnewmarkerultimatelypossibletargettherapypromotesinhibitsactivatesAKT

Similar Articles

Cited By