SHAPE-directed RNA secondary structure prediction.

Justin T Low, Kevin M Weeks
Author Information
  1. Justin T Low: Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-3290, USA.

Abstract

The diverse functional roles of RNA are determined by its underlying structure. Accurate and comprehensive knowledge of RNA structure would inform a broader understanding of RNA biology and facilitate exploiting RNA as a biotechnological tool and therapeutic target. Determining the pattern of base pairing, or secondary structure, of RNA is a first step in these endeavors. Advances in experimental, computational, and comparative analysis approaches for analyzing secondary structure have yielded accurate structures for many small RNAs, but only a few large (>500 nts) RNAs. In addition, most current methods for determining a secondary structure require considerable effort, analytical expertise, and technical ingenuity. In this review, we outline an efficient strategy for developing accurate secondary structure models for RNAs of arbitrary length. This approach melds structural information obtained using SHAPE chemistry with structure prediction using nearest-neighbor rules and the dynamic programming algorithm implemented in the RNAstructure program. Prediction accuracies reach >or=95% for RNAs on the kilobase scale. This approach facilitates both development of new models and refinement of existing RNA structure models, which we illustrate using the Gag-Pol frameshift element in an HIV-1 M-group genome. Most promisingly, integrated experimental and computational refinement brings closer the ultimate goal of efficiently and accurately establishing the secondary structure for any RNA sequence.

References

  1. Science. 2008 Feb 1;319(5863):630-3 [PMID: 18174398]
  2. RNA. 2008 May;14(5):981-91 [PMID: 18367719]
  3. Cell. 1988 Dec 23;55(6):1159-69 [PMID: 3060262]
  4. J Am Chem Soc. 2005 Mar 30;127(12):4223-31 [PMID: 15783204]
  5. Mol Cell Biol. 1993 Nov;13(11):6931-40 [PMID: 8413285]
  6. RNA. 2007 Apr;13(4):536-48 [PMID: 17299128]
  7. J Mol Biol. 1999 Oct 22;293(2):271-81 [PMID: 10550208]
  8. Curr Opin Struct Biol. 2006 Jun;16(3):270-8 [PMID: 16713706]
  9. Biochemistry. 1996 Apr 2;35(13):4187-98 [PMID: 8672455]
  10. Nat Protoc. 2009;4(10):1413-21 [PMID: 19745823]
  11. RNA. 2010 Jul;16(7):1340-9 [PMID: 20498460]
  12. Nucleic Acids Res. 1987 Nov 25;15(22):9109-28 [PMID: 2446263]
  13. RNA. 1997 Jan;3(1):1-16 [PMID: 8990394]
  14. Chem Biol. 2007 Feb;14(2):173-84 [PMID: 17317571]
  15. Methods Enzymol. 1989;180:192-212 [PMID: 2482414]
  16. J Biotechnol. 2006 Jun 25;124(1):41-55 [PMID: 16530285]
  17. J Mol Biol. 2005 Jun 24;349(5):1024-35 [PMID: 15907937]
  18. J Mol Biol. 1990 Dec 5;216(3):585-610 [PMID: 2258934]
  19. RNA. 2009 Jul;15(7):1314-21 [PMID: 19458034]
  20. J Biol Chem. 2009 May 22;284(21):14189-202 [PMID: 19276085]
  21. J Mol Biol. 2003 Aug 15;331(3):571-83 [PMID: 12899829]
  22. Nat Protoc. 2006;1(3):1610-6 [PMID: 17406453]
  23. J Am Chem Soc. 2008 Sep 17;130(37):12244-5 [PMID: 18710236]
  24. Methods Enzymol. 2009;468:67-89 [PMID: 20946765]
  25. J Am Chem Soc. 2007 Apr 11;129(14):4144-5 [PMID: 17367143]
  26. J Mol Biol. 2010 Jan 8;395(1):205-17 [PMID: 19878683]
  27. Annu Rev Biophys. 2008;37:445-64 [PMID: 18573090]
  28. Proc Natl Acad Sci U S A. 2004 May 11;101(19):7287-92 [PMID: 15123812]
  29. J Virol. 2001 Feb;75(4):1834-41 [PMID: 11160682]
  30. Nature. 1988 Jan 21;331(6153):280-3 [PMID: 2447506]
  31. Nat Biotechnol. 2004 Nov;22(11):1457-8 [PMID: 15529172]
  32. Curr Opin Struct Biol. 2002 Jun;12(3):301-10 [PMID: 12127448]
  33. J Biol Chem. 2006 Dec 8;281(49):37952-61 [PMID: 16984912]
  34. Curr Opin Struct Biol. 2007 Apr;17(2):157-65 [PMID: 17383172]
  35. J Mol Biol. 1974 Jul 25;87(1):63-88 [PMID: 4610153]
  36. Biochemistry. 1993 Jan 12;32(1):153-63 [PMID: 8418835]
  37. Virus Res. 2006 Jul;119(1):29-42 [PMID: 16310880]
  38. Biochemistry. 2006 Oct 24;45(42):12664-72 [PMID: 17042483]
  39. Curr Opin Struct Biol. 1996 Jun;6(3):299-304 [PMID: 8804832]
  40. Nat Struct Mol Biol. 2008 Jan;15(1):57-64 [PMID: 18157151]
  41. Nucleic Acids Res. 1981 Jan 10;9(1):133-48 [PMID: 6163133]
  42. Curr Opin Chem Biol. 2005 Apr;9(2):127-34 [PMID: 15811796]
  43. J Med Chem. 1994 Aug 19;37(17):2637-54 [PMID: 8064794]
  44. J Mol Biol. 1999 May 21;288(5):911-40 [PMID: 10329189]
  45. Methods Enzymol. 1995;259:242-61 [PMID: 8538457]
  46. Biochemistry. 2008 Aug 19;47(33):8504-13 [PMID: 18642882]
  47. Biochemistry. 2008 Mar 18;47(11):3454-61 [PMID: 18290632]
  48. Mol Cell Biol. 2001 Dec;21(24):8657-70 [PMID: 11713298]
  49. Biochemistry. 1998 Oct 20;37(42):14719-35 [PMID: 9778347]
  50. J Mol Biol. 2005 Jun 24;349(5):1011-23 [PMID: 15927637]
  51. Nucleic Acids Res. 2010 Jan;38(Database issue):D280-2 [PMID: 19880381]
  52. J Virol. 2009 Mar;83(5):2119-29 [PMID: 19091866]
  53. J Virol. 2009 Jul;83(13):6326-34 [PMID: 19369331]
  54. J Mol Biol. 2009 Jan 23;385(3):938-48 [PMID: 19007790]
  55. Curr Opin Investig Drugs. 2009 Feb;10(2):121-8 [PMID: 19197789]
  56. Nucleic Acids Res. 2002 Dec 1;30(23):5094-102 [PMID: 12466532]
  57. PLoS Biol. 2008 Apr 29;6(4):e96 [PMID: 18447581]
  58. Science. 2003 Mar 21;299(5614):1892-5 [PMID: 12649482]
  59. BMC Bioinformatics. 2004 Aug 05;5:105 [PMID: 15296519]
  60. Proc Natl Acad Sci U S A. 2009 Jan 6;106(1):97-102 [PMID: 19109441]
  61. Methods Mol Biol. 2008;419:53-67 [PMID: 18369975]
  62. Science. 2010 Jan 8;327(5962):202-6 [PMID: 20056889]
  63. J Virol. 2010 Jan;84(2):898-906 [PMID: 19889760]
  64. Science. 1989 Apr 7;244(4900):48-52 [PMID: 2468181]
  65. BMC Bioinformatics. 2004 Jun 04;5:71 [PMID: 15180907]
  66. RNA. 2008 Oct;14(10):1979-90 [PMID: 18772246]
  67. Bioinformatics. 2006 Jul 15;22(14):e90-8 [PMID: 16873527]
  68. Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13640-5 [PMID: 16945907]
  69. Gene. 1989 Oct 15;82(1):65-75 [PMID: 2479592]
  70. Nature. 2009 Aug 6;460(7256):711-6 [PMID: 19661910]
  71. RNA. 2008 May;14(5):862-71 [PMID: 18367717]
  72. J Mol Biol. 2005 Mar 18;347(1):53-69 [PMID: 15733917]
  73. EMBO J. 2006 Jul 12;25(13):3156-66 [PMID: 16778765]
  74. Nat Chem Biol. 2005 Jul;1(2):104-11 [PMID: 16408007]

Grants

  1. F30DA027364/NIDA NIH HHS
  2. AI068462/NIAID NIH HHS
  3. T32GM008719/NIGMS NIH HHS
  4. T32 GM008719/NIGMS NIH HHS
  5. R01 AI068462/NIAID NIH HHS
  6. F30 DA027364/NIDA NIH HHS

MeSH Term

Algorithms
Biochemistry
Computational Biology
Electrophoresis, Capillary
HIV-1
Models, Molecular
Nucleic Acid Conformation
RNA
RNA, Viral

Chemicals

RNA, Viral
RNA

Word Cloud

Created with Highcharts 10.0.0structureRNAsecondaryRNAsmodelsusingexperimentalcomputationalaccurateapproachpredictionrefinementdiversefunctionalrolesdeterminedunderlyingAccuratecomprehensiveknowledgeinformbroaderunderstandingbiologyfacilitateexploitingbiotechnologicaltooltherapeutictargetDeterminingpatternbasepairingfirststependeavorsAdvancescomparativeanalysisapproachesanalyzingyieldedstructuresmanysmalllarge>500ntsadditioncurrentmethodsdeterminingrequireconsiderableeffortanalyticalexpertisetechnicalingenuityreviewoutlineefficientstrategydevelopingarbitrarylengthmeldsstructuralinformationobtainedSHAPEchemistrynearest-neighborrulesdynamicprogrammingalgorithmimplementedRNAstructureprogramPredictionaccuraciesreach>or=95%kilobasescalefacilitatesdevelopmentnewexistingillustrateGag-PolframeshiftelementHIV-1M-groupgenomepromisinglyintegratedbringscloserultimategoalefficientlyaccuratelyestablishingsequenceSHAPE-directed

Similar Articles

Cited By