Genetically engineered virulent phage banks in the detection and control of emergent pathogenic bacteria.

Flavie Pouillot, Hélène Blois, François Iris
Author Information
  1. Flavie Pouillot: Pherecydes Pharma, Romainville, France. flavie.pouillot@pherecydes-pharma.com

Abstract

Natural outbreaks of multidrug-resistant microorganisms can cause widespread devastation, and several can be used or engineered as agents of bioterrorism. From a biosecurity standpoint, the capacity to detect and then efficiently control, within hours, the spread and the potential pathological effects of an emergent outbreak, for which there may be no effective antibiotics or vaccines, become key challenges that must be met. We turned to phage engineering as a potentially highly flexible and effective means to both detect and eradicate threats originating from emergent (uncharacterized) bacterial strains. To this end, we developed technologies allowing us to (1) concurrently modify multiple regions within the coding sequence of a gene while conserving intact the remainder of the gene, (2) reversibly interrupt the lytic cycle of an obligate virulent phage (T4) within its host, (3) carry out efficient insertion, by homologous recombination, of any number of engineered genes into the deactivated genomes of a T4 wild-type phage population, and (4) reactivate the lytic cycle, leading to the production of engineered infective virulent recombinant progeny. This allows the production of very large, genetically engineered lytic phage banks containing, in an E. coli host, a very wide spectrum of variants for any chosen phage-associated function, including phage host-range. Screening of such a bank should allow the rapid isolation of recombinant T4 particles capable of detecting (ie, diagnosing), infecting, and destroying hosts belonging to gram-negative bacterial species far removed from the original E. coli host.

References

  1. Trends Microbiol. 2009 Feb;17(2):66-72 [PMID: 19162482]
  2. Genetics. 1989 Jul;122(3):471-9 [PMID: 2759419]
  3. J Theor Biol. 2005 Jun 21;234(4):497-509 [PMID: 15808871]
  4. Res Microbiol. 2008 Jun;159(5):340-8 [PMID: 18550341]
  5. J Infect Chemother. 2005 Oct;11(5):211-9 [PMID: 16258815]
  6. J Mol Biol. 1996 Feb 2;255(4):589-603 [PMID: 8568899]
  7. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6640-5 [PMID: 10829079]
  8. J Mol Biol. 1998 Sep 25;282(3):543-56 [PMID: 9737921]
  9. J Bacteriol. 2008 May;190(10):3434-43 [PMID: 18359804]
  10. Foodborne Pathog Dis. 2009 Sep;6(7):807-15 [PMID: 19459758]
  11. Gene. 1989 Oct 30;82(2):313-5 [PMID: 2684784]
  12. Proc Natl Acad Sci U S A. 2009 Mar 24;106(12):4629-34 [PMID: 19255432]
  13. Mol Biol Evol. 2009 Sep;26(9):2041-6 [PMID: 19494036]
  14. Res Microbiol. 2003 May;154(4):259-67 [PMID: 12798230]
  15. J Mol Biol. 1996 May 24;258(5):726-31 [PMID: 8637004]
  16. FEMS Microbiol Lett. 2002 Nov 5;216(2):243-8 [PMID: 12435509]
  17. BMC Mol Biol. 2008 Feb 04;9:20 [PMID: 18248677]
  18. J Theor Biol. 2007 Dec 7;249(3):411-21 [PMID: 17904162]
  19. BMC Evol Biol. 2009 Oct 05;9:241 [PMID: 19804637]
  20. Antimicrob Agents Chemother. 2008 Dec;52(12):4344-50 [PMID: 18838590]
  21. BMC Mol Biol. 2009 Jan 27;10:4 [PMID: 19173723]
  22. J Bacteriol. 2007 Feb;189(4):1482-7 [PMID: 17041060]
  23. Appl Environ Microbiol. 2008 Jul;74(14):4256-63 [PMID: 18502917]
  24. Annu Rev Microbiol. 2001;55:437-51 [PMID: 11544363]
  25. Evolution. 2000 Apr;54(2):686-91 [PMID: 10937243]
  26. Adv Exp Med Biol. 1997;419:71-82 [PMID: 9193638]
  27. J Bacteriol. 2004 Nov;186(21):7262-72 [PMID: 15489438]
  28. J Mol Biol. 1991 Jun 20;219(4):655-63 [PMID: 1829115]
  29. Microbiology (Reading). 2005 Jun;151(Pt 6):1729-1740 [PMID: 15941982]
  30. J Bacteriol. 2009 Oct;191(19):6029-39 [PMID: 19633081]
  31. Prog Mol Biol Transl Sci. 2009;85:43-89 [PMID: 19215770]
  32. J Mol Biol. 2007 Aug 24;371(4):855-72 [PMID: 17599352]
  33. Proc Natl Acad Sci U S A. 2007 Jul 3;104(27):11197-202 [PMID: 17592147]
  34. PLoS Pathog. 2009 Jan;5(1):e1000253 [PMID: 19119417]
  35. Proc Natl Acad Sci U S A. 2002 Jun 25;99(13):8488-93 [PMID: 12070352]
  36. Mini Rev Med Chem. 2008 Mar;8(3):248-55 [PMID: 18336345]
  37. EMBO J. 1985 Sep;4(9):2343-6 [PMID: 3000773]
  38. Gene. 2009 Jun 1;438(1-2):57-64 [PMID: 19268696]

MeSH Term

Bacteria
Bacteriophages
Biological Specimen Banks
Communicable Diseases, Emerging
Disease Outbreaks
Genetic Engineering
Humans
Organisms, Genetically Modified
Virulence

Word Cloud

Created with Highcharts 10.0.0phageengineeredwithinemergentlyticvirulentT4hostcandetectcontroleffectivebacterialgenecycleproductionrecombinantbanksEcoliNaturaloutbreaksmultidrug-resistantmicroorganismscausewidespreaddevastationseveralusedagentsbioterrorismbiosecuritystandpointcapacityefficientlyhoursspreadpotentialpathologicaleffectsoutbreakmayantibioticsvaccinesbecomekeychallengesmustmetturnedengineeringpotentiallyhighlyflexiblemeanseradicatethreatsoriginatinguncharacterizedstrainsenddevelopedtechnologiesallowingus1concurrentlymodifymultipleregionscodingsequenceconservingintactremainder2reversiblyinterruptobligate3carryefficientinsertionhomologousrecombinationnumbergenesdeactivatedgenomeswild-typepopulation4reactivateleadinginfectiveprogenyallowslargegeneticallycontainingwidespectrumvariantschosenphage-associatedfunctionincludinghost-rangeScreeningbankallowrapidisolationparticlescapabledetectingiediagnosinginfectingdestroyinghostsbelonginggram-negativespeciesfarremovedoriginalGeneticallydetectionpathogenicbacteria

Similar Articles

Cited By