Mechanical properties and gene expression of chondrocytes on micropatterned substrates following dedifferentiation in monolayer.

Eric M Darling, Poston E Pritchett, Emily E Evans, Richard Superfine, Stefan Zauscher, Farshid Guilak
Author Information
  1. Eric M Darling: Department of Surgery, Duke University Medical Center, Durham, NC 27710 USA.

Abstract

Chondrocytes in articular cartilage normally exhibit high expression of collagen II and aggrecan but rapidly dedifferentiate to a fibroblastic phenotype if passaged in culture. Previous studies have suggested that the loss of chondrocyte phenotype is associated with changes in the structure of the F-actin cytoskeleton, which also controls cell mechanical properties. In this study, we examined how dedifferentiation in monolayer influences the mechanical properties of chondrocytes isolated from different zones of articular cartilage. Atomic force microscopy was used to measure the mechanical properties of superficial and middle/deep zone chondrocytes as they underwent serial passaging and subsequent growth on fibronectin-coated, micropatterned self-assembled monolayers (MSAMs) that restored a rounded cell shape in 2D culture. Chondrocytes exhibited significant increases in elastic and viscoelastic moduli with dedifferentiation in culture. These changes were only partially ameliorated by the restoration of a rounded shape on micropatterned surfaces. Furthermore, intrinsic zonal differences in cell mechanical properties were rapidly lost with passage. These findings indicate that cell mechanical properties may provide additional measures of phenotypic expression of chondrocytes as they undergo dedifferentiation and possibly redifferentiation in culture.

References

  1. Eur J Cell Biol. 1991 Dec;56(2):364-73 [PMID: 1802719]
  2. Connect Tissue Res. 1988;18(3):205-22 [PMID: 3219850]
  3. Acta Biomater. 2007 Jul;3(4):413-38 [PMID: 17540628]
  4. Cell. 1982 Aug;30(1):215-24 [PMID: 7127471]
  5. J Orthop Res. 2005 Mar;23(2):425-32 [PMID: 15734258]
  6. Biophys J. 2007 Mar 1;92(5):1784-91 [PMID: 17158567]
  7. Mol Biol Cell. 2005 Sep;16(9):4329-40 [PMID: 16000373]
  8. Connect Tissue Res. 1988;18(3):223-34 [PMID: 3219851]
  9. Tissue Eng. 2006 Oct;12(10):2853-62 [PMID: 17518654]
  10. Adv Biochem Eng Biotechnol. 2010;119:47-61 [PMID: 19343307]
  11. Tissue Eng. 2001 Dec;7(6):791-803 [PMID: 11749735]
  12. Methods Cell Biol. 2008;89:433-50 [PMID: 19118685]
  13. Biophys J. 1998 Oct;75(4):2038-49 [PMID: 9746546]
  14. J Orthop Res. 2008 Sep;26(9):1230-7 [PMID: 18404652]
  15. J Cell Biol. 1984 Jul;99(1 Pt 1):115-23 [PMID: 6539780]
  16. Tissue Eng. 2005 Mar-Apr;11(3-4):395-403 [PMID: 15871669]
  17. J Orthop Res. 2004 Jan;22(1):131-9 [PMID: 14656671]
  18. Osteoarthritis Cartilage. 2006 Dec;14(12):1227-36 [PMID: 16824771]
  19. Biorheology. 2008;45(3-4):513-26 [PMID: 18836250]
  20. Rev Sci Instrum. 1980 May;51(5):575-80 [PMID: 6988931]
  21. J Biomech. 2008;41(2):454-64 [PMID: 17825308]
  22. J Cell Sci. 1990 Oct;97 ( Pt 2):349-60 [PMID: 2277096]
  23. Acta Orthop Scand. 1995 Dec;66(6):549-56 [PMID: 8553827]
  24. Biophys J. 2005 May;88(5):3689-98 [PMID: 15722433]
  25. J Biomech. 2006;39(1):78-87 [PMID: 16271590]
  26. Ann Biomed Eng. 2004 Jan;32(1):103-11 [PMID: 14964726]
  27. Virchows Arch A Pathol Anat Histol. 1980;389(2):167-87 [PMID: 7456325]
  28. J Cell Biol. 1985 Jul;101(1):53-9 [PMID: 3159736]
  29. J Cell Sci. 1990 Oct;97 ( Pt 2):361-71 [PMID: 2277097]
  30. J Orthop Res. 2004 Nov;22(6):1182-7 [PMID: 15475195]
  31. Crit Rev Neurobiol. 2007;19(1):1-27 [PMID: 19166389]
  32. Birth Defects Res C Embryo Today. 2007 Dec;81(4):329-43 [PMID: 18228263]
  33. Exp Cell Res. 1969 Dec;58(2):379-87 [PMID: 4998296]
  34. J Orthop Res. 2000 Nov;18(6):891-8 [PMID: 11192248]
  35. Biomacromolecules. 2006 May;7(5):1630-6 [PMID: 16677048]
  36. Osteoarthritis Cartilage. 2006 Jun;14(6):571-9 [PMID: 16478668]
  37. Matrix. 1992 Apr;12(2):116-29 [PMID: 1603034]
  38. J Orthop Res. 1999 Nov;17(6):880-90 [PMID: 10632455]
  39. Biophys J. 1976 Jan;16(1):1-11 [PMID: 1244886]
  40. J Orthop Res. 1998 Nov;16(6):726-33 [PMID: 9877398]
  41. J Biomech. 1999 Feb;32(2):119-27 [PMID: 10052916]

Grants

  1. P41 EB002025/NIBIB NIH HHS
  2. R01 AR048182/NIAMS NIH HHS
  3. K99 AR054673/NIAMS NIH HHS
  4. R00 AR054673-03/NIAMS NIH HHS
  5. P01 AR050245/NIAMS NIH HHS
  6. R01 AG015768/NIA NIH HHS
  7. R01 AG015768-12/NIA NIH HHS
  8. P41 EB002025-24/NIBIB NIH HHS
  9. T32 EB001630/NIBIB NIH HHS
  10. R00 AR054673/NIAMS NIH HHS
  11. K99 AR054673-01A1/NIAMS NIH HHS
  12. T32 EB001630-02/NIBIB NIH HHS
  13. F32 AR053448/NIAMS NIH HHS
  14. R01 AR048182-03/NIAMS NIH HHS
  15. P01 AR050245-06/NIAMS NIH HHS

Word Cloud

Created with Highcharts 10.0.0propertiesmechanicalculturecelldedifferentiationchondrocytesexpressionmicropatternedChondrocytesarticularcartilagerapidlyphenotypechangesmonolayerroundedshapenormallyexhibithighcollagenIIaggrecandedifferentiatefibroblasticpassagedPreviousstudiessuggestedlosschondrocyteassociatedstructureF-actincytoskeletonalsocontrolsstudyexaminedinfluencesisolateddifferentzonesAtomicforcemicroscopyusedmeasuresuperficialmiddle/deepzoneunderwentserialpassagingsubsequentgrowthfibronectin-coatedself-assembledmonolayersMSAMsrestored2DexhibitedsignificantincreaseselasticviscoelasticmodulipartiallyamelioratedrestorationsurfacesFurthermoreintrinsiczonaldifferenceslostpassagefindingsindicatemayprovideadditionalmeasuresphenotypicundergopossiblyredifferentiationMechanicalgenesubstratesfollowing

Similar Articles

Cited By