Molecular basis for barbed end uncapping by CARMIL homology domain 3 of mouse CARMIL-1.

Adam Zwolak, Takehito Uruno, Grzegorz Piszczek, John A Hammer, Nico Tjandra
Author Information
  1. Adam Zwolak: Laboratory of Molecular Biophysics, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA.

Abstract

Capping protein (CP) is a ubiquitously expressed, 62-kDa heterodimer that binds the barbed end of the actin filament with approximately 0.1 nm affinity to prevent further monomer addition. CARMIL is a multidomain protein, present from protozoa to mammals, that binds CP and is important for normal actin dynamics in vivo. The CARMIL CP binding site resides in its CAH3 domain (CARMIL homology domain 3) located at or near the protein's C terminus. CAH3 binds CP with approximately 1 nm affinity, resulting in a complex with weak capping activity (30-200 nm). Solution assays and single-molecule imaging show that CAH3 binds CP already present on the barbed end, causing a 300-fold increase in the dissociation rate of CP from the end (i.e. uncapping). Here we used nuclear magnetic resonance (NMR) to define the molecular interaction between the minimal CAH3 domain (CAH3a/b) of mouse CARMIL-1 and CP. Specifically, we show that the highly basic CAH3a subdomain is required for the high affinity interaction of CAH3 with a complementary "acidic groove" on CP opposite its actin-binding surface. This CAH3a-CP interaction orients the CAH3b subdomain, which we show is also required for potent anti-CP activity, directly adjacent to the basic patch of CP, shown previously to be required for CP association to and high affinity interaction with the barbed end. The importance of specific residue interactions between CP and CAH3a/b was confirmed by site-directed mutagenesis of both proteins. Together, these results offer a mechanistic explanation for the barbed end uncapping activity of CARMIL, and they identify the basic patch on CP as a crucial regulatory site.

Associated Data

PDB | 2KZ7

References

  1. Biophys J. 2005 Feb;88(2):1387-402 [PMID: 15556992]
  2. Nature. 1990 Mar 22;344(6264):352-4 [PMID: 2179733]
  3. J Biol Chem. 2010 Aug 13;285(33):25767-81 [PMID: 20538588]
  4. J Biol Chem. 2007 Feb 23;282(8):5871-9 [PMID: 17182619]
  5. J Biol Chem. 1999 Dec 3;274(49):35159-71 [PMID: 10574999]
  6. J Biol Chem. 2006 Nov 24;281(47):36347-59 [PMID: 16987810]
  7. J Biol Chem. 2006 Oct 13;281(41):31021-30 [PMID: 16895918]
  8. J Cell Biol. 2006 Dec 18;175(6):947-55 [PMID: 17178911]
  9. Cell. 2008 May 30;133(5):841-51 [PMID: 18510928]
  10. Nature. 1999 Oct 7;401(6753):613-6 [PMID: 10524632]
  11. Nat Struct Mol Biol. 2010 Apr;17(4):497-503 [PMID: 20357771]
  12. Mol Biol Cell. 1996 Jan;7(1):1-15 [PMID: 8741835]
  13. Gene. 2004 Dec 22;343(2):291-304 [PMID: 15588584]
  14. Trends Biochem Sci. 2004 Aug;29(8):418-28 [PMID: 15362226]
  15. J Am Chem Soc. 2003 Mar 12;125(10):2902-12 [PMID: 12617657]
  16. J Biomol NMR. 1998 Aug;12(2):345-8 [PMID: 21136330]
  17. J Biol Chem. 2010 Jan 22;285(4):2707-20 [PMID: 19926785]
  18. J Cell Biol. 2001 Jun 25;153(7):1479-97 [PMID: 11425877]
  19. Proc Natl Acad Sci U S A. 1997 Nov 11;94(23):12366-71 [PMID: 9356455]
  20. J Mol Biol. 1993 Dec 5;234(3):826-36 [PMID: 8254675]
  21. J Biol Chem. 2006 Apr 14;281(15):10635-50 [PMID: 16434392]
  22. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3685-90 [PMID: 9108038]
  23. Eur J Biochem. 1980 Apr;105(2):279-87 [PMID: 6991253]
  24. J Cell Biol. 2003 Sep 15;162(6):1079-88 [PMID: 12975351]
  25. Development. 2009 Apr;136(7):1201-10 [PMID: 19244282]
  26. Cell. 2003 Feb 21;112(4):453-65 [PMID: 12600310]
  27. Biochemistry. 2000 May 9;39(18):5355-65 [PMID: 10820006]
  28. J Biol Chem. 1995 Oct 27;270(43):25316-9 [PMID: 7592689]
  29. Curr Biol. 2003 Sep 2;13(17):1531-7 [PMID: 12956956]
  30. J Biol Chem. 2007 Sep 21;282(38):28014-24 [PMID: 17656356]
  31. J Biol Chem. 2006 Jul 14;281(28):19196-203 [PMID: 16707503]
  32. Mol Biol Cell. 2009 Dec;20(24):5290-305 [PMID: 19846667]
  33. J Biomol NMR. 1995 Jan;5(1):67-81 [PMID: 7881273]
  34. EMBO J. 2006 Nov 29;25(23):5626-33 [PMID: 17110933]
  35. EMBO J. 2003 Apr 1;22(7):1529-38 [PMID: 12660160]
  36. J Cell Biol. 1984 Jul;99(1 Pt 1):217-25 [PMID: 6429155]
  37. J Cell Biol. 1992 Dec;119(5):1151-62 [PMID: 1447293]
  38. J Mol Biol. 2007 Jan 12;365(2):480-501 [PMID: 17059832]
  39. Dev Cell. 2005 Aug;9(2):209-21 [PMID: 16054028]
  40. J Cell Biol. 2004 Feb 16;164(4):567-80 [PMID: 14769858]
  41. J Biol Chem. 2004 Jan 23;279(4):3068-77 [PMID: 14594951]
  42. Protein Expr Purif. 2009 Oct;67(2):113-9 [PMID: 19427903]
  43. J Magn Reson. 2003 Jan;160(1):65-73 [PMID: 12565051]
  44. J Biol Chem. 2003 Jun 20;278(25):22396-403 [PMID: 12690097]
  45. Mol Cell Biol. 2005 May;25(9):3519-34 [PMID: 15831458]
  46. J Biomol NMR. 1994 Mar;4(2):301-6 [PMID: 8019138]
  47. Cell. 1995 May 19;81(4):591-600 [PMID: 7758113]
  48. J Cell Biol. 1996 Oct;135(1):169-79 [PMID: 8858171]
  49. Curr Biol. 2007 Mar 6;17(5):395-406 [PMID: 17331727]
  50. Cell. 2004 Aug 6;118(3):363-73 [PMID: 15294161]
  51. Int Rev Cell Mol Biol. 2008;267:183-206 [PMID: 18544499]
  52. J Biol Chem. 2003 Feb 21;278(8):5864-70 [PMID: 12488317]
  53. Biochemistry. 1997 Mar 4;36(9):2517-30 [PMID: 9054557]
  54. J Magn Reson. 2007 Feb;184(2):185-95 [PMID: 17084097]

Grants

  1. /Intramural NIH HHS

MeSH Term

Actin Capping Proteins
Animals
Carrier Proteins
Mice
Microfilament Proteins
Mutagenesis, Site-Directed
Protein Binding
Protein Structure, Quaternary
Protein Structure, Tertiary
Surface Properties

Chemicals

Actin Capping Proteins
Carmil1 protein, mouse
Carrier Proteins
Microfilament Proteins

Word Cloud

Created with Highcharts 10.0.0CPendbarbedCARMILCAH3bindsaffinitydomaininteractionnmactivityshowuncappingbasicrequiredproteinactinapproximately1presentsitehomology3CAH3a/bmouseCARMIL-1subdomainhighpatchCappingubiquitouslyexpressed62-kDaheterodimerfilament0preventmonomeradditionmultidomainprotozoamammalsimportantnormaldynamicsvivobindingresideslocatednearprotein'sCterminusresultingcomplexweakcapping30-200Solutionassayssingle-moleculeimagingalreadycausing300-foldincreasedissociationrateieusednuclearmagneticresonanceNMRdefinemolecularminimalSpecificallyhighlyCAH3acomplementary"acidicgroove"oppositeactin-bindingsurfaceCAH3a-CPorientsCAH3balsopotentanti-CPdirectlyadjacentshownpreviouslyassociationimportancespecificresidueinteractionsconfirmedsite-directedmutagenesisproteinsTogetherresultsoffermechanisticexplanationidentifycrucialregulatoryMolecularbasis

Similar Articles

Cited By