Effects of ingesting [13C]glucose early or late into cold exposure on substrate utilization.

Denis P Blondin, François Péronnet, François Haman
Author Information
  1. Denis P Blondin: Institut de Recherche de l'Hôpital Montfort, Faculty of Health Sciences, University of Ottawa, 125 Univ. St., Ottawa, Ontario, Canada K1N 6N5.

Abstract

One of the factors limiting the oxidation of exogenous glucose during cold exposure may be the delay in establishing a shivering steady state (approximately 60 min), reducing glucose uptake into skeletal muscle. Therefore, using indirect calorimetry and isotopic methodologies in non-cold-acclimatized men, the main purpose of this study was to determine whether ingesting glucose at a moment coinciding with the maximal shivering intensity could increase the utilization rate of the ingested glucose. (13)C-enriched glucose was ingested (800 mg/min) from the onset (G0) or after 60 min (G60) of cold exposure when the thermogenic rate was stabilized to low-intensity shivering (approximately 2.5 times resting metabolic rate). For the same quantity of glucose ingested, the oxidation rate of exogenous glucose was 35% higher in G60 (159+/-17 vs. 118+/-17 mg/min in G0) between minutes 60 and 90. By the end of cold exposure, exogenous glucose oxidation was significantly greater in G0, reaching 231+/-14 mg/min, approximately 15% higher than the only rates previously reported. This considerably reduced the utilization of endogenous reserves over time and compared with the G60 condition. This study also demonstrates a fall in muscle glycogen utilization, when glucose was ingested from the onset of cold exposure (from approximately 150 to approximately 75 mg/min). Together, these findings indicate the importance of ingesting glucose immediately on exposure to a cold condition, relying on shivering thermogenesis and sustaining that consumption for as long as possible. This substrate not only provides an auxiliary fuel source for shivering thermogenesis, but, more importantly, preserves the limited endogenous glucose reserves.

References

  1. Can J Sport Sci. 1991 Mar;16(1):23-9 [PMID: 1645211]
  2. J Appl Physiol (1985). 1993 Jul;75(1):70-5 [PMID: 8397182]
  3. Am J Physiol. 1991 Jan;260(1 Pt 1):E75-88 [PMID: 1899005]
  4. J Appl Physiol (1985). 1990 Sep;69(3):1047-52 [PMID: 2123176]
  5. J Appl Physiol (1985). 2002 Jul;93(1):77-84 [PMID: 12070189]
  6. Sports Med. 1998 Jan;25(1):7-23 [PMID: 9458524]
  7. J Appl Physiol Respir Environ Exerc Physiol. 1982 Dec;53(6):1620-4 [PMID: 7153158]
  8. J Appl Physiol (1985). 2002 Mar;92(3):1255-60 [PMID: 11842065]
  9. Eur J Clin Invest. 1994 Dec;24(12):818-23 [PMID: 7705376]
  10. Eur J Appl Physiol Occup Physiol. 1991;63(3-4):179-83 [PMID: 1761004]
  11. J Physiol. 2005 Jul 1;566(Pt 1):247-56 [PMID: 15831534]
  12. Br J Nutr. 2006 Jul;96(1):56-61 [PMID: 16869991]
  13. Front Biosci (Schol Ed). 2010 Jun 01;2:1155-68 [PMID: 20515847]
  14. Eur J Appl Physiol Occup Physiol. 1993;67(1):30-4 [PMID: 8375361]
  15. J Appl Physiol Respir Environ Exerc Physiol. 1984 Feb;56(2):315-20 [PMID: 6706743]
  16. Nutrition. 2004 Jul-Aug;20(7-8):669-77 [PMID: 15212750]
  17. J Appl Physiol (1985). 1998 Aug;85(2):723-30 [PMID: 9688752]
  18. Exerc Sport Sci Rev. 2005 Jan;33(1):43-8 [PMID: 15640720]
  19. Pflugers Arch. 1987 Dec;410(6):652-6 [PMID: 3449801]
  20. Med Sci Sports Exerc. 2007 Jan;39(1):131-8 [PMID: 17218895]
  21. Eur J Appl Physiol Occup Physiol. 1993;67(3):239-44 [PMID: 8223537]
  22. Clin Sci (Lond). 1996 Dec;91(6):665-77 [PMID: 8976801]
  23. J Physiol. 2004 Apr 1;556(Pt 1):305-13 [PMID: 14742724]
  24. J Physiol. 1999 Mar 1;515 ( Pt 2):579-89 [PMID: 10050023]
  25. Eur J Appl Physiol. 2010 Jan;108(2):289-300 [PMID: 19779734]
  26. J Appl Physiol (1985). 2007 Oct;103(4):1346-51 [PMID: 17641212]
  27. Am J Physiol. 1999 Apr;276(4):E672-83 [PMID: 10198303]
  28. J Physiol. 1995 Nov 15;489 ( Pt 1):243-50 [PMID: 8583408]
  29. J Physiol. 2001 Sep 1;535(Pt 2):313-22 [PMID: 11533125]
  30. J Appl Physiol (1985). 2004 Jan;96(1):32-40 [PMID: 12949018]

MeSH Term

Administration, Oral
Adult
Beverages
Blood Glucose
Body Temperature Regulation
Calorimetry, Indirect
Carbon Isotopes
Cold Temperature
Cross-Over Studies
Energy Metabolism
Glucose
Glycogen
Humans
Male
Muscle, Skeletal
Oxidation-Reduction
Shivering
Time Factors

Chemicals

Blood Glucose
Carbon Isotopes
Glycogen
Glucose

Word Cloud

Created with Highcharts 10.0.0glucosecoldexposureshiveringapproximatelyutilizationrateingestedmg/minoxidationexogenous60ingestingG0G60minmusclestudyonsethigherendogenousreservesconditionthermogenesissubstrateOnefactorslimitingmaydelayestablishingsteadystatereducinguptakeskeletalThereforeusingindirectcalorimetryisotopicmethodologiesnon-cold-acclimatizedmenmainpurposedeterminewhethermomentcoincidingmaximalintensityincrease13C-enriched800thermogenicstabilizedlow-intensity25timesrestingmetabolicquantity35%159+/-17vs118+/-17minutes90endsignificantlygreaterreaching231+/-1415%ratespreviouslyreportedconsiderablyreducedtimecomparedalsodemonstratesfallglycogen15075TogetherfindingsindicateimportanceimmediatelyrelyingsustainingconsumptionlongpossibleprovidesauxiliaryfuelsourceimportantlypreserveslimitedEffects[13C]glucoseearlylate

Similar Articles

Cited By