Comparison study of microarray meta-analysis methods.

Anna Campain, Yee Hwa Yang
Author Information
  1. Anna Campain: School of Mathematics and Statistics, Center of Mathematical Biology, University of Sydney, F07 Sydney, NSW 2006, Australia. anna.campain@sydney.edu.au

Abstract

BACKGROUND: Meta-analysis methods exist for combining multiple microarray datasets. However, there are a wide range of issues associated with microarray meta-analysis and a limited ability to compare the performance of different meta-analysis methods.
RESULTS: We compare eight meta-analysis methods, five existing methods, two naive methods and a novel approach (mDEDS). Comparisons are performed using simulated data and two biological case studies with varying degrees of meta-analysis complexity. The performance of meta-analysis methods is assessed via ROC curves and prediction accuracy where applicable.
CONCLUSIONS: Existing meta-analysis methods vary in their ability to perform successful meta-analysis. This success is very dependent on the complexity of the data and type of analysis. Our proposed method, mDEDS, performs competitively as a meta-analysis tool even as complexity increases. Because of the varying abilities of compared meta-analysis methods, care should be taken when considering the meta-analysis method used for particular research.

References

  1. Bioinformatics. 2010 Feb 1;26(3):333-40 [PMID: 19965884]
  2. Nature. 2000 Feb 3;403(6769):503-11 [PMID: 10676951]
  3. Cancer Res. 2006 Nov 1;66(21):10292-301 [PMID: 17079448]
  4. Stat Med. 1999 Feb 15;18(3):321-59 [PMID: 10070677]
  5. Nat Med. 2002 Jan;8(1):68-74 [PMID: 11786909]
  6. J Clin Oncol. 2007 Apr 1;25(10):1239-46 [PMID: 17401012]
  7. Nat Methods. 2005 May;2(5):345-50 [PMID: 15846361]
  8. Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):5116-21 [PMID: 11309499]
  9. BMC Bioinformatics. 2007 Mar 08;8 Suppl 1:S5 [PMID: 17430572]
  10. Bioinformatics. 2005 Apr 1;21(7):1084-93 [PMID: 15513985]
  11. Comp Funct Genomics. 2005;6(3):116-22 [PMID: 18629222]
  12. FEBS Lett. 2004 Aug 27;573(1-3):83-92 [PMID: 15327980]
  13. Control Clin Trials. 1986 Sep;7(3):177-88 [PMID: 3802833]
  14. Oncogene. 2005 Jul 7;24(29):4660-71 [PMID: 15897907]
  15. Oncogene. 2005 Jul 28;24(32):5079-88 [PMID: 15897887]
  16. Gene. 2007 Oct 15;401(1-2):12-8 [PMID: 17651921]
  17. Cancer Res. 2002 Aug 1;62(15):4427-33 [PMID: 12154050]
  18. Biostatistics. 2007 Jan;8(1):118-27 [PMID: 16632515]
  19. Bioinformatics. 2008 Feb 1;24(3):374-82 [PMID: 18204063]
  20. BMC Bioinformatics. 2006 May 19;7:261 [PMID: 16712727]
  21. Bioinformatics. 2003;19 Suppl 1:i84-90 [PMID: 12855442]
  22. Clin Cancer Res. 2004 May 1;10(9):2922-7 [PMID: 15131026]
  23. PLoS Med. 2008 Sep 30;5(9):e184 [PMID: 18767902]
  24. OMICS. 2006 Fall;10(3):381-97 [PMID: 17069515]
  25. Curr Genomics. 2008 Dec;9(8):525-34 [PMID: 19516959]
  26. Nucleic Acids Res. 2007 Jan;35(Database issue):D26-31 [PMID: 17148475]
  27. Anal Chem. 2003 Sep 1;75(17):4672-5 [PMID: 14632079]
  28. BMC Bioinformatics. 2005 Nov 04;6:265 [PMID: 16271137]

MeSH Term

Algorithms
Breast Neoplasms
Databases, Genetic
Female
Gene Expression Profiling
Humans
Lymphoma
Meta-Analysis as Topic
Oligonucleotide Array Sequence Analysis
ROC Curve

Word Cloud

Created with Highcharts 10.0.0meta-analysismethodsmicroarraycomplexityabilitycompareperformancetwomDEDSdatavaryingmethodBACKGROUND:Meta-analysisexistcombiningmultipledatasetsHoweverwiderangeissuesassociatedlimiteddifferentRESULTS:eightfiveexistingnaivenovelapproachComparisonsperformedusingsimulatedbiologicalcasestudiesdegreesassessedviaROCcurvespredictionaccuracyapplicableCONCLUSIONS:ExistingvaryperformsuccessfulsuccessdependenttypeanalysisproposedperformscompetitivelytoolevenincreasesabilitiescomparedcaretakenconsideringusedparticularresearchComparisonstudy

Similar Articles

Cited By