Expression breadth and expression abundance behave differently in correlations with evolutionary rates.

Seung Gu Park, Sun Shim Choi
Author Information
  1. Seung Gu Park: Department of Medical Biotechnology, College of Biomedical Science, and Institute of Bioscience & Biotechnology, Kangwon National University, Chunchon 200-701, Korea.

Abstract

BACKGROUND: One of the main objectives of the molecular evolution and evolutionary systems biology field is to reveal the underlying principles that dictate protein evolutionary rates. Several studies argue that expression abundance is the most critical component in determining the rate of evolution, especially in unicellular organisms. However, the expression breadth also needs to be considered for multicellular organisms.
RESULTS: In the present paper, we analyzed the relationship between the two expression variables and rates using two different genome-scale expression datasets, microarrays and ESTs. A significant positive correlation between the expression abundance (EA) and expression breadth (EB) was revealed by Kendall's rank correlation tests. A novel random shuffling approach was applied for EA and EB to compare the correlation coefficients obtained from real data sets to those estimated based on random chance. A novel method called a Fixed Group Analysis (FGA) was designed and applied to investigate the correlations between expression variables and rates when one of the two expression variables was evenly fixed.
CONCLUSIONS: In conclusion, all of these analyses and tests consistently showed that the breadth rather than the abundance of gene expression is tightly linked with the evolutionary rate in multicellular organisms.

References

  1. Nucleic Acids Res. 2007;35(19):6350-6 [PMID: 17881362]
  2. Proc Natl Acad Sci U S A. 1963 Oct;50:672-9 [PMID: 14077496]
  3. Proc Biol Sci. 2006 Jun 22;273(1593):1507-15 [PMID: 16777745]
  4. Science. 2002 Apr 26;296(5568):750-2 [PMID: 11976460]
  5. Biochem Biophys Res Commun. 2007 Aug 31;360(3):586-92 [PMID: 17610841]
  6. Curr Genomics. 2008 Dec;9(8):525-34 [PMID: 19516959]
  7. Gene. 2005 Jan 17;345(1):119-26 [PMID: 15716085]
  8. PLoS Biol. 2007 Feb;5(2):e14 [PMID: 17298171]
  9. Mol Biol Evol. 2004 Aug;21(8):1504-11 [PMID: 15014144]
  10. Curr Opin Biotechnol. 2006 Oct;17(5):481-7 [PMID: 16962765]
  11. Mol Syst Biol. 2005;1:2005.0021 [PMID: 16729056]
  12. Mol Biol Evol. 2005 Apr;22(4):1147-55 [PMID: 15689524]
  13. BMC Genomics. 2008 Apr 16;9:172 [PMID: 18416810]
  14. FEBS Lett. 1991 Jul 22;285(2):165-9 [PMID: 1855585]
  15. Genome Biol. 2007;8(2):R21 [PMID: 17309804]
  16. Immunity. 2000 Jun;12(6):687-98 [PMID: 10894168]
  17. BMC Evol Biol. 2004 May 27;4:13 [PMID: 15165289]
  18. Mol Biol Evol. 1985 Mar;2(2):150-74 [PMID: 3916709]
  19. Mol Biol Evol. 2005 Oct;22(10):2113-8 [PMID: 15987875]
  20. BMC Evol Biol. 2003 May 23;3:11 [PMID: 12769820]
  21. Proc Natl Acad Sci U S A. 2004 Apr 20;101(16):6062-7 [PMID: 15075390]
  22. Mol Biol Evol. 2006 Feb;23(2):327-37 [PMID: 16237209]
  23. J Mol Evol. 2008 May;66(5):446-56 [PMID: 18414925]
  24. Gene. 2009 Aug 15;443(1-2):121-31 [PMID: 19410638]
  25. Mol Biol Evol. 2006 Nov;23(11):2072-80 [PMID: 16887903]
  26. Genes Cells. 2009 Apr;14(4):499-509 [PMID: 19335619]
  27. BMC Evol Biol. 2003 Oct 02;3:21 [PMID: 14525624]
  28. Mol Syst Biol. 2009;5:260 [PMID: 19357639]
  29. Nature. 2003 Jan 30;421(6922):496-7; discussion 497-8 [PMID: 12556881]
  30. Genome Res. 2004 Jan;14(1):54-61 [PMID: 14707169]
  31. Proc Natl Acad Sci U S A. 2005 Oct 4;102(40):14338-43 [PMID: 16176987]
  32. Genome Biol. 2007;8(6):R125 [PMID: 17594492]
  33. Bioinformatics. 2002 Dec;18(12):1585-92 [PMID: 12490442]
  34. Nucleic Acids Res. 2003 Dec 1;31(23):6976-85 [PMID: 14627830]
  35. Genome Biol. 2004;5(10):R80 [PMID: 15461798]
  36. Genetics. 2006 Sep;174(1):511-8 [PMID: 16816425]
  37. Genetics. 2001 Oct;159(2):623-33 [PMID: 11606539]
  38. Genetics. 2004 Sep;168(1):373-81 [PMID: 15454550]
  39. Trends Genet. 2004 May;20(5):248-53 [PMID: 15109779]
  40. Cell. 2008 Jul 25;134(2):341-52 [PMID: 18662548]
  41. Genetics. 2001 Jun;158(2):927-31 [PMID: 11430355]
  42. Mol Biol Evol. 2004 Feb;21(2):236-9 [PMID: 14595094]
  43. Genetics. 2005 Dec;171(4):2151-5 [PMID: 16143605]
  44. Nature. 2001 Jun 28;411(6841):1046-9 [PMID: 11429604]
  45. Mol Biol Evol. 2004 Jan;21(1):108-16 [PMID: 14595100]
  46. BMC Genomics. 2006 Apr 21;7:86 [PMID: 16626500]
  47. J Mol Evol. 1976 May 26;7(4):269-311 [PMID: 180297]
  48. Genome Biol. 2008;9(9):R142 [PMID: 18811952]
  49. FEBS Lett. 2005 Oct 10;579(24):5333-7 [PMID: 16194536]
  50. DNA Res. 2009 Feb;16(1):13-30 [PMID: 19131380]
  51. Nucleic Acids Res. 2006;34(20):5906-14 [PMID: 17062620]
  52. Trends Genet. 2005 Apr;21(4):203-7 [PMID: 15797613]
  53. Genome Res. 2002 Jun;12(6):962-8 [PMID: 12045149]

MeSH Term

Animals
Computational Biology
Evolution, Molecular
Expressed Sequence Tags
Gene Expression
Gene Expression Profiling
Humans
Mice
Oligonucleotide Array Sequence Analysis

Word Cloud

Created with Highcharts 10.0.0expressionevolutionaryratesabundancebreadthorganismstwovariablescorrelationevolutionratemulticellularEAEBtestsnovelrandomappliedcorrelationsBACKGROUND:OnemainobjectivesmolecularsystemsbiologyfieldrevealunderlyingprinciplesdictateproteinSeveralstudiesarguecriticalcomponentdeterminingespeciallyunicellularHoweveralsoneedsconsideredRESULTS:presentpaperanalyzedrelationshipusingdifferentgenome-scaledatasetsmicroarraysESTssignificantpositiverevealedKendall'srankshufflingapproachcomparecoefficientsobtainedrealdatasetsestimatedbasedchancemethodcalledFixedGroupAnalysisFGAdesignedinvestigateoneevenlyfixedCONCLUSIONS:conclusionanalysesconsistentlyshowedrathergenetightlylinkedExpressionbehavedifferently

Similar Articles

Cited By