Divergent aging characteristics in CBA/J and CBA/CaJ mouse cochleae.

Kevin K Ohlemiller, Ashley R Dahl, Patricia M Gagnon
Author Information
  1. Kevin K Ohlemiller: Program in Audiology and Communication Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA. kohlemiller@wustl.edu

Abstract

Two inbred mouse strains, CBA/J and CBA/CaJ, have been used nearly interchangeably as 'good hearing' standards for research in hearing and deafness. We recently reported, however, that these two strains diverge after 1 year of age, such that CBA/CaJ mice show more rapid elevation of compound action potential (CAP) thresholds at high frequencies (Ohlemiller, Brain Res. 1277: 70-83, 2009). One contributor is progressive decline in endocochlear potential (EP) that appears only in CBA/CaJ. Here, we explore the cellular bases of threshold and EP disparities in old CBA/J and CBA/CaJ mice. Among the major findings, both strains exhibit a characteristic age (∼18 months in CBA/J and 24 months in CBA/CaJ) when females overtake males in sensitivity decline. Strain differences in progression of hearing loss are not due to greater hair cell loss in CBA/CaJ, but instead appear to reflect greater neuronal loss, plus more pronounced changes in the lateral wall, leading to EP decline. While both male and female CBA/CaJ show these pathologies, they are more pronounced in females. A novel feature that differed sharply by strain was moderate loss of outer sulcus cells (or 'root' cells) in spiral ligament of the upper basal turn in old CBA/CaJ mice, giving rise to deep indentations and void spaces in the ligament. We conclude that CBA/CaJ mice differ both quantitatively and qualitatively from CBA/J in age-related cochlear pathology, and model different types of presbycusis.

References

  1. Arch Otolaryngol Head Neck Surg. 1999 Jun;125(6):654-9 [PMID: 10367922]
  2. Hear Res. 1995 Nov;91(1-2):19-32 [PMID: 8647720]
  3. J Assoc Res Otolaryngol. 2003 Sep;4(3):339-52 [PMID: 14690052]
  4. Laryngoscope. 1957 Feb;67(2):118-29 [PMID: 13407093]
  5. Hear Res. 1991 Jul;54(1):123-34 [PMID: 1917712]
  6. FASEB J. 2008 Feb;22(2):410-7 [PMID: 17846082]
  7. Arch Otolaryngol. 1972 Jul;96(1):16-21 [PMID: 5032052]
  8. Hear Res. 2009 Jun;252(1-2):89-99 [PMID: 19114100]
  9. Hear Res. 2002 Oct;172(1-2):172-85 [PMID: 12361880]
  10. Scand Audiol Suppl. 1992;36:1-39 [PMID: 1488615]
  11. Hear Res. 1997 Sep;111(1-2):31-41 [PMID: 9307309]
  12. ORL J Otorhinolaryngol Relat Spec. 1994 Mar-Apr;56(2):61-7 [PMID: 8177586]
  13. Laryngoscope. 1969 Jan;79(1):1-29 [PMID: 5765242]
  14. Hear Res. 2004 Apr;190(1-2):141-8 [PMID: 15051136]
  15. Laryngoscope. 2006 Sep;116(9 Pt 3 Suppl 112):1-12 [PMID: 16946668]
  16. Acta Otolaryngol. 2007 Feb;127(2):149-55 [PMID: 17364346]
  17. Lancet. 2005 Sep 24-30;366(9491):1111-20 [PMID: 16182900]
  18. Hear Res. 2008 Sep;243(1-2):87-94 [PMID: 18573325]
  19. FEBS Lett. 2005 May 9;579(12):2541-5 [PMID: 15862287]
  20. J Assoc Res Otolaryngol. 2010 Jun;11(2):235-44 [PMID: 20094753]
  21. J Comp Neurol. 2004 Nov 1;479(1):103-16 [PMID: 15389608]
  22. J Assoc Res Otolaryngol. 2003 Jun;4(2):164-75 [PMID: 12943371]
  23. Hear Res. 1992 Aug;61(1-2):35-46 [PMID: 1326507]
  24. Laryngoscope. 2006 Oct;116(10):1846-50 [PMID: 17003714]
  25. Nucleic Acids Res. 2008 Jan;36(Database issue):D724-8 [PMID: 18158299]
  26. Audiology. 1992;31(4):181-9 [PMID: 1444929]
  27. Hear Res. 1999 Aug;134(1-2):48-56 [PMID: 10452375]
  28. Hear Res. 2005 Jul;205(1-2):225-40 [PMID: 15953531]
  29. Hear Res. 1995 Jan;82(1):44-52 [PMID: 7744712]
  30. Ann Otol Rhinol Laryngol. 1972 Jun;81(3):364-76 [PMID: 4113137]
  31. Hear Res. 1997 Feb;104(1-2):101-11 [PMID: 9119754]
  32. Ann Otol Rhinol Laryngol. 1993 Jan;102(1 Pt 2):1-16 [PMID: 8420477]
  33. Audiol Neurootol. 2001 Sep-Oct;6(5):231-49 [PMID: 11729326]
  34. Laryngoscope. 1974 Oct;84(10):1777-821 [PMID: 4138750]
  35. Ann N Y Acad Sci. 2009 Jul;1170:708-17 [PMID: 19686217]
  36. J Neurosci. 2009 Nov 11;29(45):14077-85 [PMID: 19906956]
  37. Hear Res. 1990 Sep;48(1-2):79-91 [PMID: 2249962]
  38. Hear Res. 2009 Jun;252(1-2):71-8 [PMID: 19450435]
  39. Hear Res. 1993 Feb;65(1-2):125-32 [PMID: 8458745]
  40. Hear Res. 2009 Sep;255(1-2):84-90 [PMID: 19531376]
  41. J Assoc Res Otolaryngol. 2003 Sep;4(3):353-62 [PMID: 14690053]
  42. Hear Res. 1996 Dec 1;102(1-2):181-90 [PMID: 8951461]
  43. Hear Res. 1997 Jun;108(1-2):9-16 [PMID: 9213117]
  44. J Am Acad Audiol. 1993 Jan;4(1):42-9 [PMID: 8422482]
  45. Hear Res. 1998 Jan;115(1-2):162-74 [PMID: 9472745]
  46. Brain Res. 2006 May 26;1091(1):89-102 [PMID: 16631134]
  47. Laryngoscope. 1988 Jul;98(7):754-9 [PMID: 3386381]
  48. Hear Res. 2005 Feb;200(1-2):87-101 [PMID: 15668041]
  49. Otolaryngol Head Neck Surg. 2004 Dec;131(6):897-903 [PMID: 15577787]
  50. J Assoc Res Otolaryngol. 2001 Jun;2(2):118-29 [PMID: 11550522]
  51. Audiology. 2001 Nov-Dec;40(6):322-6 [PMID: 11781045]
  52. J Electron Microsc Tech. 1990 Jun;15(2):165-72 [PMID: 2355267]
  53. J Assoc Res Otolaryngol. 2007 Mar;8(1):8-17 [PMID: 17160359]
  54. Hear Res. 2001 Aug;158(1-2):123-30 [PMID: 11506944]
  55. Brain Res. 2009 Jun 24;1277:70-83 [PMID: 19285967]
  56. Audiol Neurootol. 2005 Sep-Oct;10(5):243-7 [PMID: 15976497]
  57. Hear Res. 2006 Oct;220(1-2):10-26 [PMID: 16901664]
  58. Hear Res. 2007 Feb;224(1-2):34-50 [PMID: 17175124]
  59. J Acoust Soc Am. 1997 Jun;101(6):3546-53 [PMID: 9193043]
  60. Acta Otolaryngol. 2010 Feb;130(2):204-14 [PMID: 19479455]
  61. Science. 1999 Aug 27;285(5432):1408-11 [PMID: 10464101]
  62. Hear Res. 1996 Oct;100(1-2):80-100 [PMID: 8922982]
  63. Hear Res. 2008 Oct;244(1-2):85-97 [PMID: 18727954]
  64. J Comp Neurol. 2004 Feb 9;469(3):377-90 [PMID: 14730589]
  65. J Assoc Res Otolaryngol. 2007 Dec;8(4):422-34 [PMID: 17674100]
  66. Hear Res. 2002 Oct;172(1-2):118-26 [PMID: 12361874]
  67. Hear Res. 2009 Mar;249(1-2):1-14 [PMID: 19141317]
  68. J Assoc Res Otolaryngol. 2010 Sep;11(3):435-48 [PMID: 20393778]
  69. Hear Res. 2005 Apr;202(1-2):63-73 [PMID: 15811700]

Grants

  1. P30 DC004665/NIDCD NIH HHS
  2. R01 DC008321/NIDCD NIH HHS
  3. DC08321/NIDCD NIH HHS
  4. R55 DC008321/NIDCD NIH HHS
  5. R01 DC003454/NIDCD NIH HHS
  6. R01 DC03454/NIDCD NIH HHS
  7. P30 DC04665/NIDCD NIH HHS

MeSH Term

Action Potentials
Aging
Animals
Auditory Threshold
Cochlea
Disease Models, Animal
Evoked Potentials, Auditory
Female
Male
Mice
Mice, Inbred CBA
Presbycusis
Sex Characteristics

Word Cloud

Created with Highcharts 10.0.0CBA/CaJCBA/JmicelossstrainsdeclineEPmousehearingageshowpotentialoldfemalesgreaterpronouncedcellsligamentTwoinbredusednearlyinterchangeably'goodhearing'standardsresearchdeafnessrecentlyreportedhowevertwodiverge1 yearrapidelevationcompoundactionCAPthresholdshighfrequenciesOhlemillerBrainRes1277:70-832009OnecontributorprogressiveendocochlearappearsexplorecellularbasesthresholddisparitiesAmongmajorfindingsexhibitcharacteristic∼18 months24 monthsovertakemalessensitivityStraindifferencesprogressionduehaircellinsteadappearreflectneuronalpluschangeslateralwallleadingmalefemalepathologiesnovelfeaturedifferedsharplystrainmoderateoutersulcus'root'spiralupperbasalturngivingrisedeepindentationsvoidspacesconcludedifferquantitativelyqualitativelyage-relatedcochlearpathologymodeldifferenttypespresbycusisDivergentagingcharacteristicscochleae

Similar Articles

Cited By (59)