Extending stability through hierarchical clusters in echo state networks.

Sarah Jarvis, Stefan Rotter, Ulrich Egert
Author Information
  1. Sarah Jarvis: Bernstein Center Freiburg Freiburg, Germany.

Abstract

Echo State Networks (ESN) are reservoir networks that satisfy well-established criteria for stability when constructed as feedforward networks. Recent evidence suggests that stability criteria are altered in the presence of reservoir substructures, such as clusters. Understanding how the reservoir architecture affects stability is thus important for the appropriate design of any ESN. To quantitatively determine the influence of the most relevant network parameters, we analyzed the impact of reservoir substructures on stability in hierarchically clustered ESNs, as they allow a smooth transition from highly structured to increasingly homogeneous reservoirs. Previous studies used the largest eigenvalue of the reservoir connectivity matrix (spectral radius) as a predictor for stable network dynamics. Here, we evaluate the impact of clusters, hierarchy and intercluster connectivity on the predictive power of the spectral radius for stability. Both hierarchy and low relative cluster sizes extend the range of spectral radius values, leading to stable networks, while increasing intercluster connectivity decreased maximal spectral radius.

Keywords

References

  1. PLoS One. 2007 Oct 17;2(10):e1049 [PMID: 17940613]
  2. Neural Netw. 2007 Apr;20(3):414-23 [PMID: 17556115]
  3. Neuron. 2009 Aug 27;63(4):544-57 [PMID: 19709635]
  4. PLoS Comput Biol. 2008 Sep 26;4(9):e1000190 [PMID: 18818769]
  5. IEEE Trans Neural Netw. 2006 May;17(3):820-4 [PMID: 16722187]
  6. Science. 2002 Aug 30;297(5586):1551-5 [PMID: 12202830]
  7. Neural Netw. 2007 Apr;20(3):365-76 [PMID: 17517490]
  8. Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Feb;67(2 Pt 2):026112 [PMID: 12636753]
  9. Neural Comput. 2007 Jan;19(1):111-38 [PMID: 17134319]
  10. IEEE Trans Neural Netw. 2007 Sep;18(5):1364-75 [PMID: 18220186]
  11. Neural Netw. 2009 Sep;22(7):861-3 [PMID: 19423285]
  12. Neural Netw. 2007 Apr;20(3):391-403 [PMID: 17517492]
  13. Neural Netw. 2007 Apr;20(3):424-32 [PMID: 17556116]
  14. Biosystems. 2006 Jul;85(1):55-64 [PMID: 16757100]
  15. Neural Netw. 2007 Apr;20(3):335-52 [PMID: 17517495]

Word Cloud

Created with Highcharts 10.0.0reservoirnetworksstabilityspectralradiusclustersconnectivityESNcriteriafeedforwardsubstructuresnetworkimpactclusteredstablehierarchyinterclusterEchoStateNetworkssatisfywell-establishedconstructedRecentevidencesuggestsalteredpresenceUnderstandingarchitectureaffectsthusimportantappropriatedesignquantitativelydetermineinfluencerelevantparametersanalyzedhierarchicallyESNsallowsmoothtransitionhighlystructuredincreasinglyhomogeneousreservoirsPreviousstudiesusedlargesteigenvaluematrixpredictordynamicsevaluatepredictivepowerlowrelativeclustersizesextendrangevaluesleadingincreasingdecreasedmaximalExtendinghierarchicalechostate

Similar Articles

Cited By