Matrix metalloproteinase-9 regulates tumor cell invasion through cleavage of protease nexin-1.

Danmei Xu, Chad M McKee, Yunhong Cao, Yunchuan Ding, Benedikt M Kessler, Ruth J Muschel
Author Information
  1. Danmei Xu: Gray Institute of Radiation Oncology and Biology, University of Oxford, Oxford, UK.

Abstract

Matrix metalloproteinase-9 (MMP-9) expression is known to enhance the invasion and metastasis of tumor cells. In previous work based on a proteomic screen, we identified the serpin protease nexin-1 (PN-1) as a potential target of MMP-9. Here, we show that PN-1 is a substrate for MMP-9 and establish a link between PN-1 degradation by MMP-9 and regulation of invasion. PN-1 levels increased in prostate carcinoma cells after downregulation of MMP-9 and in tissues of MMP-9-deficient mice, consistent with PN-1 degradation by MMP-9. We identified three MMP-9 cleavage sites in PN-1 and showed that mutations in those sites made PN-1 more resistant to MMP-9. Urokinase plasminogen activator (uPA) is inhibited by PN-1. MMP-9 augmented uPA activity in the medium of PC3-ML cells by degrading PN-1. Prostate cancer cells, overexpressing PN-1 or treated with MMP-9 shRNA, had reduced cell invasion in Matrigel. PN-1 siRNA restored uPA activity and the invasive capacity. PN-1 mutated in the serpin inhibitory domain, the reactive center loop, failed to inhibit uPA and to reduce Matrigel invasion. This study shows a novel molecular pathway in which MMP-9 regulates uPA activity and tumor cell invasion through cleavage of PN-1.

References

  1. J Biol Chem. 2000 Jun 30;275(26):19628-37 [PMID: 10867020]
  2. Science. 1994 Jan 28;263(5146):526-9 [PMID: 8290962]
  3. Methods. 2004 Feb;32(2):130-40 [PMID: 14698625]
  4. J Biol Chem. 2005 Oct 28;280(43):36529-40 [PMID: 16127174]
  5. Diabetes. 2009 Aug;58(8):1797-806 [PMID: 19509016]
  6. Biochim Biophys Acta. 2005 May 25;1755(1):37-69 [PMID: 15907591]
  7. J Biol Chem. 1994 Jun 24;269(25):17199-205 [PMID: 8006028]
  8. Biochem J. 2002 Nov 1;367(Pt 3):833-9 [PMID: 12117412]
  9. Mol Cell Proteomics. 2008 Nov;7(11):2215-28 [PMID: 18596065]
  10. Blood. 2010 Jan 7;115(1):97-106 [PMID: 19855083]
  11. Cancer Cell. 2006 Nov;10(5):355-62 [PMID: 17097558]
  12. J Clin Invest. 1999 Dec;104(11):1507-15 [PMID: 10587514]
  13. Arterioscler Thromb Vasc Biol. 2003 Jan 1;23(1):142-7 [PMID: 12524238]
  14. Crit Rev Biochem Mol Biol. 2007 May-Jun;42(3):113-85 [PMID: 17562450]
  15. Science. 2002 Mar 29;295(5564):2387-92 [PMID: 11923519]
  16. J Neurochem. 1991 Jan;56(1):234-42 [PMID: 1987320]
  17. Cancer Cell. 2008 Oct 7;14(4):324-34 [PMID: 18835034]
  18. J Biol Chem. 2006 Sep 8;281(36):26483-90 [PMID: 16787920]
  19. J Biol Chem. 2001 Sep 7;276(36):33293-6 [PMID: 11435447]
  20. Cancer Res. 2000 Dec 1;60(23):6597-600 [PMID: 11118040]
  21. Cancer Res. 1993 Jul 1;53(13):3073-7 [PMID: 8319215]
  22. Cell. 1980 Aug;21(1):37-45 [PMID: 6157479]
  23. Curr Cancer Drug Targets. 2009 Feb;9(1):32-71 [PMID: 19200050]
  24. J Pathol. 2008 Feb;214(3):283-93 [PMID: 18095256]
  25. Nature. 2005 Dec 8;438(7069):820-7 [PMID: 16341007]
  26. Curr Med Chem. 2008;15(22):2192-222 [PMID: 18781944]
  27. J Cell Physiol. 2009 Sep;220(3):655-63 [PMID: 19472211]
  28. BMC Cancer. 2009 Jun 25;9:201 [PMID: 19555470]
  29. Biochemistry. 1987 Oct 6;26(20):6407-10 [PMID: 3427015]
  30. J Biol Chem. 2002 Jun 28;277(26):23788-93 [PMID: 11959855]
  31. Development. 1993 Dec;119(4):1119-34 [PMID: 8306878]
  32. J Thromb Haemost. 2003 Jul;1(7):1663-70 [PMID: 12871303]
  33. J Thromb Haemost. 2006 Feb;4(2):322-8 [PMID: 16420559]
  34. J Cell Biol. 1995 Dec;131(6 Pt 1):1609-22 [PMID: 8522616]
  35. Biochem J. 1987 Jul 15;245(2):543-50 [PMID: 2959275]
  36. Nat Rev Cancer. 2002 Mar;2(3):161-74 [PMID: 11990853]
  37. J Biol Chem. 1997 May 9;272(19):12261-4 [PMID: 9139667]
  38. Cancer Treat Rev. 2007 Oct;33(6):521-7 [PMID: 17658220]
  39. Semin Thromb Hemost. 1986 Jul;12(3):216-20 [PMID: 3775388]
  40. Oral Oncol. 2008 Mar;44(3):309-13 [PMID: 17468036]
  41. Cancer Res. 2009 Jul 15;69(14):5690-8 [PMID: 19584287]
  42. Thromb Haemost. 2001 Jul;86(1):124-9 [PMID: 11486997]
  43. Immunol Lett. 2008 Jun 30;118(2):116-24 [PMID: 18495253]
  44. J Biol Chem. 1993 Feb 15;268(5):3720-7 [PMID: 8429047]
  45. Chem Rev. 2002 Dec;102(12):4751-804 [PMID: 12475206]
  46. Eur J Biochem. 1996 Apr 1;237(1):180-7 [PMID: 8620872]
  47. J Clin Oncol. 2009 Nov 1;27(31):5287-97 [PMID: 19738110]

Grants

  1. 11563/Cancer Research UK
  2. A6237/Cancer Research UK

MeSH Term

Amyloid beta-Protein Precursor
Animals
Cell Line, Tumor
Humans
Male
Matrix Metalloproteinase 9
Mice
Mice, Inbred C57BL
Mice, Knockout
Neoplasm Invasiveness
Prostatic Neoplasms
Protease Nexins
RNA, Small Interfering
Receptors, Cell Surface
Serpin E2
Serpins
Urokinase-Type Plasminogen Activator

Chemicals

Amyloid beta-Protein Precursor
Protease Nexins
RNA, Small Interfering
Receptors, Cell Surface
SERPINE2 protein, human
Serpin E2
Serpine2 protein, mouse
Serpins
Urokinase-Type Plasminogen Activator
Matrix Metalloproteinase 9

Word Cloud

Created with Highcharts 10.0.0PN-1MMP-9invasionuPAcellstumorcleavageactivitycellMatrixmetalloproteinase-9identifiedserpinproteasenexin-1degradationsitesMatrigelregulatesexpressionknownenhancemetastasispreviousworkbasedproteomicscreenpotentialtargetshowsubstrateestablishlinkregulationlevelsincreasedprostatecarcinomadownregulationtissuesMMP-9-deficientmiceconsistentthreeshowedmutationsmaderesistantUrokinaseplasminogenactivatorinhibitedaugmentedmediumPC3-MLdegradingProstatecanceroverexpressingtreatedshRNAreducedsiRNArestoredinvasivecapacitymutatedinhibitorydomainreactivecenterloopfailedinhibitreducestudyshowsnovelmolecularpathway

Similar Articles

Cited By