Functional compensation of primary and secondary metabolites by duplicate genes in Arabidopsis thaliana.

Kousuke Hanada, Yuji Sawada, Takashi Kuromori, Romy Klausnitzer, Kazuki Saito, Tetsuro Toyoda, Kazuo Shinozaki, Wen-Hsiung Li, Masami Yokota Hirai
Author Information
  1. Kousuke Hanada: Plant Science Center, RIKEN, Yokohama, Kanagawa, Japan. kohanada@psc.riken.jp

Abstract

It is well known that knocking out a gene in an organism often causes no phenotypic effect. One possible explanation is the existence of duplicate genes; that is, the effect of knocking out a gene is compensated by a duplicate copy. Another explanation is the existence of alternative pathways. In terms of metabolic products, the relative roles of the two mechanisms have been extensively studied in yeast but not in any multi-cellular organisms. Here, to address the functional compensation of metabolic products by duplicate genes, we quantified 35 metabolic products from 1,976 genes in knockout mutants of Arabidopsis thaliana by a high-throughput Liquid chromatography-Mass spectrometer (LC-MS) analysis. We found that knocking out either a singleton gene or a duplicate gene with distant paralogs in the genome tends to induce stronger metabolic effects than knocking out a duplicate gene with a close paralog in the genome, indicating that only duplicate genes with close paralogs play a significant role in functional compensation for metabolic products in A. thaliana. To extend the analysis, we examined metabolic products with either high or low connectivity in a metabolic network. We found that the compensatory role of duplicate genes is less important when the metabolite has a high connectivity, indicating that functional compensation by alternative pathways is common in the case of high connectivity. In conclusion, recently duplicated genes play an important role in the compensation of metabolic products only when the number of alternative pathways is small.

References

  1. Proc Biol Sci. 2004 Jan 7;271(1534):89-96 [PMID: 15002776]
  2. Nature. 2004 Jun 10;429(6992):661-4 [PMID: 15190353]
  3. Plant Physiol. 2008 Oct;148(2):993-1003 [PMID: 18715958]
  4. Nat Genet. 2005 Jan;37(1):77-83 [PMID: 15592468]
  5. Genome Biol Evol. 2009 Oct 29;1:409-14 [PMID: 20333209]
  6. Trends Genet. 2009 Apr;25(4):152-5 [PMID: 19285746]
  7. Genome Biol Evol. 2009 Apr 30;1:23-33 [PMID: 20333174]
  8. Genome Biol. 2005;6(6):R49 [PMID: 15960801]
  9. Nucleic Acids Res. 1994 Nov 11;22(22):4673-80 [PMID: 7984417]
  10. Bioinformatics. 2003 Jan 22;19(2):270-7 [PMID: 12538249]
  11. Nature. 2003 Jan 2;421(6918):63-6 [PMID: 12511954]
  12. Trends Genet. 2007 Aug;23(8):375-8 [PMID: 17512629]
  13. Nat Genet. 2005 May;37(5):501-6 [PMID: 15806101]
  14. Nat Genet. 2000 Apr;24(4):355-61 [PMID: 10742097]
  15. Plant Physiol. 2005 May;138(1):27-37 [PMID: 15888675]
  16. Trends Genet. 2007 Aug;23(8):378-81 [PMID: 17559966]
  17. Nat Genet. 2008 May;40(5):676-81 [PMID: 18408719]
  18. Nat Genet. 2006 Sep;38(9):993-8 [PMID: 16941010]
  19. Plant J. 2008 Aug;55(3):526-42 [PMID: 18419781]
  20. Trends Genet. 2009 Oct;25(10):441-2 [PMID: 19783063]
  21. Proc Natl Acad Sci U S A. 2007 Apr 10;104(15):6478-83 [PMID: 17420480]
  22. Plant J. 2007 Apr;50(2):347-63 [PMID: 17376166]
  23. Phytochemistry. 2001 Jan;56(1):5-51 [PMID: 11198818]
  24. Plant Physiol. 2003 Jun;132(2):453-60 [PMID: 12805578]
  25. Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 [PMID: 9254694]
  26. Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2307-12 [PMID: 17284612]
  27. Plant J. 2006 Aug;47(4):640-51 [PMID: 16813574]
  28. Genome Res. 2005 Oct;15(10):1421-30 [PMID: 16204195]

MeSH Term

Amino Acid Sequence
Arabidopsis
Evolution, Molecular
Gene Knockdown Techniques
Genes, Duplicate
Genes, Plant
Molecular Sequence Data

Word Cloud

Created with Highcharts 10.0.0duplicatemetabolicgenesproductsgenecompensationknockingalternativepathwaysfunctionalthalianarolehighconnectivityeffectexplanationexistenceArabidopsisanalysisfoundeitherparalogsgenomecloseindicatingplayimportantwellknownorganismoftencausesphenotypicOnepossiblecompensatedcopyAnothertermsrelativerolestwomechanismsextensivelystudiedyeastmulti-cellularorganismsaddressquantified351976knockoutmutantshigh-throughputLiquidchromatography-MassspectrometerLC-MSsingletondistanttendsinducestrongereffectsparalogsignificantextendexaminedlownetworkcompensatorylessmetabolitecommoncaseconclusionrecentlyduplicatednumbersmallFunctionalprimarysecondarymetabolites

Similar Articles

Cited By