Cysteine-based redox switches in enzymes.

Chananat Klomsiri, P Andrew Karplus, Leslie B Poole
Author Information
  1. Chananat Klomsiri: Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA.

Abstract

The enzymes involved in metabolism and signaling are regulated by posttranslational modifications that influence their catalytic activity, rates of turnover, and targeting to subcellular locations. Most prominent among these has been phosphorylation/dephosphorylation, but now a distinct class of modification coming to the fore is a set of versatile redox modifications of key cysteine residues. Here we review the chemical, structural, and regulatory aspects of such redox regulation of enzymes and discuss examples of how these regulatory modifications often work in concert with phosphorylation/dephosphorylation events, making redox dependence an integral part of many cell signaling processes. Included are the emerging roles played by peroxiredoxins, a family of cysteine-based peroxidases that now appear to be major players in both antioxidant defense and cell signaling.

References

  1. Nature. 2005 May 19;435(7040):347-53 [PMID: 15902258]
  2. Biochemistry. 2002 Jan 29;41(4):1293-301 [PMID: 11802729]
  3. Antioxid Redox Signal. 2006 Mar-Apr;8(3-4):243-70 [PMID: 16677071]
  4. Methods Enzymol. 2010;473:77-94 [PMID: 20513472]
  5. Curr Opin Chem Biol. 1998 Oct;2(5):633-41 [PMID: 9818190]
  6. Cell. 2004 May 28;117(5):625-35 [PMID: 15163410]
  7. Antioxid Redox Signal. 2009 May;11(5):997-1014 [PMID: 18999917]
  8. J Biol Chem. 2006 Apr 14;281(15):10420-30 [PMID: 16418165]
  9. Science. 2007 Sep 7;317(5843):1393-7 [PMID: 17717153]
  10. Arch Biochem Biophys. 2002 Jan 15;397(2):312-8 [PMID: 11795888]
  11. J Alzheimers Dis. 2010;20(2):369-93 [PMID: 20164570]
  12. J Cell Biol. 2008 Jun 30;181(7):1129-39 [PMID: 18573911]
  13. J Biol Chem. 2004 Jun 18;279(25):26159-66 [PMID: 15075328]
  14. J Biol Chem. 2007 Jul 27;282(30):22011-22 [PMID: 17519234]
  15. J Biol Chem. 2002 Jun 7;277(23):20336-42 [PMID: 11916965]
  16. Mol Cell Biol. 2005 Aug;25(15):6391-403 [PMID: 16024778]
  17. Science. 2003 Apr 25;300(5619):650-3 [PMID: 12714747]
  18. Proc Natl Acad Sci U S A. 2008 Jul 15;105(28):9633-8 [PMID: 18606987]
  19. Biochemistry. 2006 Jul 18;45(28):8476-87 [PMID: 16834321]
  20. Circ Res. 2007 Feb 2;100(2):213-9 [PMID: 17185628]
  21. Chem Res Toxicol. 2008 Sep;21(9):1832-40 [PMID: 18698849]
  22. J Biol Chem. 1998 Dec 4;273(49):32554-60 [PMID: 9829991]
  23. Antioxid Redox Signal. 2009 Jun;11(6):1289-99 [PMID: 18999986]
  24. ACS Chem Biol. 2010 Apr 16;5(4):405-14 [PMID: 20146502]
  25. Cell. 2010 Feb 19;140(4):454-6 [PMID: 20178737]
  26. ACS Chem Biol. 2010 Jan 15;5(1):47-62 [PMID: 19957967]
  27. Free Radic Biol Med. 2000 May 1;28(9):1349-61 [PMID: 10924854]
  28. Methods Enzymol. 2010;473:95-115 [PMID: 20513473]
  29. J Biol Chem. 2007 Apr 20;282(16):11885-92 [PMID: 17329258]
  30. Free Radic Biol Med. 2006 May 1;40(9):1539-48 [PMID: 16632114]
  31. Free Radic Biol Med. 2009 Oct 15;47(8):1162-71 [PMID: 19646526]
  32. FEBS Lett. 2002 Apr 24;517(1-3):229-32 [PMID: 12062443]
  33. J Biol Chem. 2002 Oct 11;277(41):38029-36 [PMID: 12161445]
  34. FEBS J. 2008 Jan;275(1):69-88 [PMID: 18067579]
  35. Biochemistry. 1994 May 17;33(19):5974-83 [PMID: 8180227]
  36. Annu Rev Biochem. 1985;54:305-29 [PMID: 2862840]
  37. Proc Natl Acad Sci U S A. 2008 Dec 16;105(50):19839-44 [PMID: 19064914]
  38. Mol Cell. 2008 Jan 18;29(1):36-45 [PMID: 18206967]
  39. J Biol Chem. 2002 May 31;277(22):19396-401 [PMID: 11904290]
  40. Science. 2002 Aug 16;297(5584):1186-90 [PMID: 12183632]
  41. J Biol Chem. 2001 Sep 7;276(36):33393-401 [PMID: 11445563]
  42. Mol Cell Proteomics. 2010 Jul;9(7):1400-10 [PMID: 20233844]
  43. Trends Biochem Sci. 2003 Jan;28(1):32-40 [PMID: 12517450]
  44. Antioxid Redox Signal. 2006 Sep-Oct;8(9-10):1819-27 [PMID: 16987034]
  45. Curr Opin Chem Biol. 2008 Feb;12(1):18-24 [PMID: 18282483]
  46. Biochemistry. 2010 Feb 9;49(5):835-42 [PMID: 20050630]
  47. Free Radic Res. 2006 Dec;40(12):1250-8 [PMID: 17090414]
  48. Biochem J. 2004 Aug 1;381(Pt 3):675-83 [PMID: 15139849]
  49. FEBS J. 2009 May;276(9):2469-77 [PMID: 19476488]
  50. Biochem Pharmacol. 1999 Jul 1;58(1):133-43 [PMID: 10403526]
  51. Cell. 2005 Jun 3;121(5):667-70 [PMID: 15935753]
  52. Free Radic Biol Med. 2008 Aug 15;45(4):494-502 [PMID: 18501718]
  53. J Biol Chem. 2010 Mar 5;285(10):7505-16 [PMID: 20061379]
  54. Biochemistry. 1999 Oct 12;38(41):13574-83 [PMID: 10521264]
  55. Cell. 2010 Feb 19;140(4):517-28 [PMID: 20178744]
  56. Biochemistry. 1998 Apr 21;37(16):5633-42 [PMID: 9548949]
  57. Science. 2006 Jun 30;312(5782):1882-3 [PMID: 16809515]
  58. Proc Natl Acad Sci U S A. 2007 Nov 20;104(47):18742-7 [PMID: 18003920]
  59. J Biol Chem. 2003 Dec 12;278(50):50226-33 [PMID: 14522978]
  60. J Immunol. 2007 Nov 15;179(10):6456-67 [PMID: 17982034]
  61. J Mol Biol. 2010 Jan 29;395(4):844-59 [PMID: 19854201]
  62. FEBS Lett. 2005 Mar 21;579(8):1891-5 [PMID: 15763569]
  63. J Biol Chem. 2003 Aug 29;278(35):33408-15 [PMID: 12816947]
  64. Biochem Pharmacol. 2008 Jun 1;75(11):2234-44 [PMID: 18395187]
  65. Biochemistry. 2004 Jun 15;43(23):7356-64 [PMID: 15182179]
  66. Biochemistry. 2003 Sep 2;42(34):10060-70 [PMID: 12939134]
  67. Chem Res Toxicol. 2001 Oct;14(10):1453-64 [PMID: 11599938]
  68. Biochemistry. 2007 Jan 23;46(3):709-19 [PMID: 17223692]
  69. J Biol Chem. 2005 Jan 28;280(4):2750-8 [PMID: 15533936]
  70. Nat Rev Mol Cell Biol. 2007 Oct;8(10):813-24 [PMID: 17848967]
  71. Biochemistry. 2000 Sep 12;39(36):11121-8 [PMID: 10998251]
  72. FEBS Lett. 1999 Jun 11;452(3):219-22 [PMID: 10386594]
  73. Biochemistry. 2008 Dec 2;47(48):12860-8 [PMID: 18986167]
  74. J Bacteriol. 2001 Dec;183(24):7173-81 [PMID: 11717276]
  75. Curr Opin Pharmacol. 2007 Aug;7(4):381-91 [PMID: 17662654]
  76. J Cell Biol. 2006 Dec 4;175(5):779-89 [PMID: 17145963]
  77. Cell Cycle. 2009 Aug;8(15):2353-5 [PMID: 19571676]
  78. J Biol Chem. 2008 Apr 11;283(15):9986-98 [PMID: 18250162]
  79. J Biol Chem. 2001 Nov 2;276(44):41279-87 [PMID: 11533038]
  80. Antioxid Redox Signal. 2005 May-Jun;7(5-6):560-77 [PMID: 15890001]
  81. Protein Sci. 2008 Feb;17(2):299-312 [PMID: 18227433]
  82. Protein Sci. 2008 Mar;17(3):473-81 [PMID: 18287280]
  83. EMBO J. 1998 Oct 1;17(19):5543-50 [PMID: 9755155]
  84. Science. 1998 May 8;280(5365):895-8 [PMID: 9572732]
  85. Biochemistry. 2005 Aug 9;44(31):10583-92 [PMID: 16060667]
  86. Free Radic Biol Med. 2008 Sep 1;45(5):549-61 [PMID: 18544350]
  87. Trends Biochem Sci. 2009 Feb;34(2):85-96 [PMID: 19135374]
  88. Biochemistry. 2009 Feb 17;48(6):1399-409 [PMID: 19166311]
  89. Proc Natl Acad Sci U S A. 2008 Jun 17;105(24):8197-202 [PMID: 18287020]
  90. Annu Rev Biochem. 2008;77:755-76 [PMID: 18173371]
  91. Annu Rev Pharmacol Toxicol. 2004;44:325-47 [PMID: 14744249]
  92. J Biol Chem. 2005 Aug 5;280(31):28775-84 [PMID: 15941719]

Grants

  1. R01 GM050389/NIGMS NIH HHS
  2. R01 GM075304/NIGMS NIH HHS
  3. R33 CA126659/NCI NIH HHS

MeSH Term

Animals
Cysteine
Enzymes
Humans
Models, Biological
Oxidation-Reduction
Peroxiredoxins
Phosphorylation
Protein Processing, Post-Translational
Signal Transduction

Chemicals

Enzymes
Peroxiredoxins
Cysteine

Word Cloud

Created with Highcharts 10.0.0redoxenzymessignalingmodificationsphosphorylation/dephosphorylationnowregulatorycellinvolvedmetabolismregulatedposttranslationalinfluencecatalyticactivityratesturnovertargetingsubcellularlocationsprominentamongdistinctclassmodificationcomingforesetversatilekeycysteineresiduesreviewchemicalstructuralaspectsregulationdiscussexamplesoftenworkconcerteventsmakingdependenceintegralpartmanyprocessesIncludedemergingrolesplayedperoxiredoxinsfamilycysteine-basedperoxidasesappearmajorplayersantioxidantdefenseCysteine-basedswitches

Similar Articles

Cited By