Phonological decisions require both the left and right supramarginal gyri.

Gesa Hartwigsen, Annette Baumgaertner, Cathy J Price, Maria Koehnke, Stephan Ulmer, Hartwig R Siebner
Author Information
  1. Gesa Hartwigsen: Department of Neurology, Christian-Albrechts-University Kiel, 24105 Kiel, Germany. Gesa.Hartwigsen@gmx.de

Abstract

Recent functional imaging studies demonstrated that both the left and right supramarginal gyri (SMG) are activated when healthy right-handed subjects make phonological word decisions. However, lesion studies typically report difficulties with phonological processing after left rather than right hemisphere damage. Here, we used a unique dual-site transcranial magnetic stimulation (TMS) approach to test whether the SMG in the right hemisphere contributes to modality-independent (i.e., auditory and visual) phonological decisions. To test task-specificity, we compared the effect of real or sham TMS during phonological, semantic, and perceptual decisions. To test laterality and anatomical specificity, we compared the effect of TMS over the left, right, or bilateral SMG and angular gyri. The accuracy and reaction times of phonological decisions were selectively disrupted relative to semantic and perceptual decisions when real TMS was applied over the left, right, or bilateral SMG. These effects were not observed for TMS over the angular gyri. A follow-up experiment indicated that the threshold-intensity for inducing a disruptive effect on phonological decisions was identical for unilateral TMS over the right or left SMG. Taken together, these findings provide converging evidence that the right SMG contributes to accurate and efficient phonological decisions in the healthy brain, with no evidence that the left and right SMG can compensate for one another during TMS. Our findings motivate detailed studies of phonological processing in patients with acute or long-term damage of the right SMG.

References

  1. Clin Neuropsychol. 2010 Jan;24(1):57-69 [PMID: 19557656]
  2. J Physiol. 1992;453:525-46 [PMID: 1464843]
  3. Cortex. 2009 Oct;45(9):1091-6 [PMID: 19232583]
  4. Trends Cogn Sci. 2006 Nov;10(11):480-6 [PMID: 16997610]
  5. Acta Neurol Belg. 2008 Dec;108(4):161-6 [PMID: 19239047]
  6. J Cereb Blood Flow Metab. 2006 Sep;26(9):1122-7 [PMID: 16757978]
  7. J Neurophysiol. 2005 Dec;94(6):4520-7 [PMID: 16135552]
  8. Electroencephalogr Clin Neurophysiol. 1998 Jan;108(1):1-16 [PMID: 9474057]
  9. J Neurol. 2009 Sep;256(9):1461-7 [PMID: 19363625]
  10. Cortex. 2006 Jul;42(5):774-81 [PMID: 16909638]
  11. Brain. 2006 Jun;129(Pt 6):1371-84 [PMID: 16638796]
  12. Neuropsychologia. 1999 Feb;37(2):125-35 [PMID: 10080370]
  13. J Physiol. 2006 Aug 1;574(Pt 3):917-28 [PMID: 16581858]
  14. Neuroimage. 2006 Jul 15;31(4):1453-74 [PMID: 16571375]
  15. J Cogn Neurosci. 2006 Jul;18(7):1147-55 [PMID: 16839288]
  16. Cortex. 2009 Oct;45(9):1035-42 [PMID: 19371866]
  17. Lancet Neurol. 2003 Mar;2(3):145-56 [PMID: 12849236]
  18. Neuroreport. 2001 Sep 17;12(13):2785-90 [PMID: 11588577]
  19. J Neurophysiol. 1998 Feb;79(2):1102-7 [PMID: 9463466]
  20. Hum Brain Mapp. 2010 Mar;31(3):365-77 [PMID: 19777554]
  21. J Cogn Neurosci. 1997 Nov;9(6):727-33 [PMID: 23964595]
  22. J Cogn Neurosci. 2003 Jan 1;15(1):71-84 [PMID: 12590844]
  23. Neurosci Lett. 1994 Nov 21;182(1):25-8 [PMID: 7891880]
  24. J Neurosci. 2005 Aug 31;25(35):8010-6 [PMID: 16135758]
  25. J Cogn Neurosci. 2004 Mar;16(2):289-300 [PMID: 15068598]
  26. Neuroimage. 2009 Jan 15;44(2):563-8 [PMID: 18848630]
  27. Trends Cogn Sci. 2002 Oct 1;6(10):416-421 [PMID: 12413574]
  28. Cereb Cortex. 2009 Jun;19(6):1474-85 [PMID: 18987393]
  29. Cognition. 2004 May-Jun;92(1-2):67-99 [PMID: 15037127]
  30. Neuroscientist. 2008 Feb;14(1):119-27 [PMID: 17911215]
  31. Neuropsychologia. 1971 Mar;9(1):97-113 [PMID: 5146491]
  32. J Physiol. 1993 Nov;471:501-19 [PMID: 8120818]
  33. Stroke. 2007 Apr;38(4):1286-92 [PMID: 17322084]
  34. Neuropsychologia. 2003;41(3):293-303 [PMID: 12457755]
  35. J Neurol Sci. 1998 Feb 5;154(2):182-93 [PMID: 9562309]
  36. Ann N Y Acad Sci. 2010 Mar;1191:62-88 [PMID: 20392276]
  37. Cereb Cortex. 2007 Dec;17(12):2841-52 [PMID: 17337745]
  38. J Cogn Neurosci. 2004 Mar;16(2):178-88 [PMID: 15068590]

Grants

  1. 082420/Wellcome Trust

MeSH Term

Adult
Auditory Perception
Brain Mapping
Decision Making
Female
Functional Laterality
Humans
Language
Magnetic Resonance Imaging
Male
Parietal Lobe
Reaction Time
Semantics
Transcranial Magnetic Stimulation
Young Adult

Word Cloud

Created with Highcharts 10.0.0rightSMGphonologicaldecisionsleftTMSgyristudiestesteffectsupramarginalhealthyprocessinghemispheredamagecontributescomparedrealsemanticperceptualbilateralangularfindingsevidenceRecentfunctionalimagingdemonstratedactivatedright-handedsubjectsmakewordHoweverlesiontypicallyreportdifficultiesratheruseduniquedual-sitetranscranialmagneticstimulationapproachwhethermodality-independentieauditoryvisualtask-specificityshamlateralityanatomicalspecificityaccuracyreactiontimesselectivelydisruptedrelativeappliedeffectsobservedfollow-upexperimentindicatedthreshold-intensityinducingdisruptiveidenticalunilateralTakentogetherprovideconvergingaccurateefficientbraincancompensateoneanothermotivatedetailedpatientsacutelong-termPhonologicalrequire

Similar Articles

Cited By