Redox biology: computational approaches to the investigation of functional cysteine residues.

Stefano M Marino, Vadim N Gladyshev
Author Information
  1. Stefano M Marino: Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.

Abstract

Cysteine (Cys) residues serve many functions, such as catalysis, stabilization of protein structure through disulfides, metal binding, and regulation of protein function. Cys residues are also subject to numerous post-translational modifications. In recent years, various computational tools aiming at classifying and predicting different functional categories of Cys have been developed, particularly for structural and catalytic Cys. On the other hand, given complexity of the subject, bioinformatics approaches have been less successful for the investigation of regulatory Cys sites. In this review, we introduce different functional categories of Cys residues. For each category, an overview of state-of-the-art bioinformatics methods and tools is provided, along with examples of successful applications and potential limitations associated with each approach. Finally, we discuss Cys-based redox switches, which modify the view of distinct functional categories of Cys in proteins.

References

  1. Nucleic Acids Res. 2010 Jul;38(Web Server issue):W503-7 [PMID: 20530534]
  2. Protein Eng Des Sel. 2004 Apr;17(4):367-73 [PMID: 15166311]
  3. Biochemistry. 2004 Jun 15;43(23):7356-64 [PMID: 15182179]
  4. Curr Opin Chem Biol. 2011 Feb;15(1):88-102 [PMID: 21130680]
  5. Annu Rev Biochem. 1996;65:241-69 [PMID: 8811180]
  6. Antioxid Redox Signal. 2009 May;11(5):997-1014 [PMID: 18999917]
  7. Proc Natl Acad Sci U S A. 2005 Jul 19;102(29):10147-52 [PMID: 16006526]
  8. PLoS Biol. 2005 Sep;3(9):e309 [PMID: 16111437]
  9. Annu Rev Biochem. 1996;65:83-100 [PMID: 8811175]
  10. Curr Opin Biotechnol. 1991 Aug;2(4):582-91 [PMID: 1367679]
  11. Bioinformatics. 2004 Jun 12;20(9):1373-80 [PMID: 14962940]
  12. FASEB J. 2006 Mar;20(3):553-5 [PMID: 16507767]
  13. Amino Acids. 2011 Jun;41(1):59-72 [PMID: 20177947]
  14. Nucleic Acids Res. 2002 Jan 1;30(1):379-82 [PMID: 11752342]
  15. Proc Natl Acad Sci U S A. 2008 May 20;105(20):7147-52 [PMID: 18480265]
  16. Biochem Biophys Res Commun. 2008 Dec 12;377(2):612-616 [PMID: 18929538]
  17. Trends Biochem Sci. 1991 Dec;16(12):463-7 [PMID: 1838215]
  18. Science. 2007 Jan 19;315(5810):387-9 [PMID: 17234949]
  19. J Biol Chem. 2008 Aug 1;283(31):21571-8 [PMID: 18534986]
  20. Proteomics. 2004 Jun;4(6):1665-71 [PMID: 15174135]
  21. Nat Struct Mol Biol. 2007 Jun;14(6):556-63 [PMID: 17515905]
  22. Brief Bioinform. 2002 Sep;3(3):265-74 [PMID: 12230035]
  23. Proteins. 2006 Nov 1;65(2):305-16 [PMID: 16927295]
  24. J Neurosci. 2002 May 1;22(9):3386-91 [PMID: 11978815]
  25. Proc Natl Acad Sci U S A. 2007 Jun 26;104(26):11109-14 [PMID: 17573533]
  26. Mol Cells. 2008 Sep 30;26(3):228-35 [PMID: 18648218]
  27. Mol Biosyst. 2008 Jun;4(6):521-31 [PMID: 18493649]
  28. Biochem J. 2003 Sep 1;374(Pt 2):513-9 [PMID: 12755685]
  29. J Mol Biol. 1997 Jan 17;265(2):217-41 [PMID: 9020984]
  30. Nat Cell Biol. 2005 Jul;7(7):665-74 [PMID: 15951807]
  31. Physiol Plant. 2010 Apr;138(4):360-71 [PMID: 19912563]
  32. Free Radic Biol Med. 2003 Oct 15;35(8):889-900 [PMID: 14556853]
  33. J Cell Biol. 2004 Feb 2;164(3):341-6 [PMID: 14757749]
  34. Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W382-8 [PMID: 15980494]
  35. Free Radic Biol Med. 2007 Sep 15;43(6):883-98 [PMID: 17697933]
  36. Expert Rev Proteomics. 2004 Oct;1(3):365-76 [PMID: 15966832]
  37. ACS Chem Biol. 2010 Jan 15;5(1):47-62 [PMID: 19957967]
  38. Bioinformatics. 2001 Oct;17(10):957-64 [PMID: 11673241]
  39. FEBS J. 2008 Jan;275(1):69-88 [PMID: 18067579]
  40. Antioxid Redox Signal. 2009 May;11(5):981-3 [PMID: 19186997]
  41. Biochemistry. 2009 Jun 9;48(22):4666-76 [PMID: 19368357]
  42. Curr Opin Chem Biol. 1998 Apr;2(2):155-8 [PMID: 9667942]
  43. Protein Eng. 1993 Jan;6(1):29-35 [PMID: 8433968]
  44. Bioinformatics. 2005 May 1;21(9):1908-16 [PMID: 15701681]
  45. Trends Biochem Sci. 2003 Jan;28(1):32-40 [PMID: 12517450]
  46. Acta Crystallogr D Biol Crystallogr. 2008 Mar;64(Pt 3):257-63 [PMID: 18323620]
  47. J Mol Biol. 2010 Dec 17;404(5):902-16 [PMID: 20950627]
  48. J Mol Biol. 2002 Jul 5;320(2):369-87 [PMID: 12079393]
  49. Protein Sci. 2006 Aug;15(8):1945-50 [PMID: 16877711]
  50. Protein Sci. 1992 Feb;1(2):216-26 [PMID: 1304904]
  51. Mol Microbiol. 2002 Apr;44(1):1-8 [PMID: 11967064]
  52. Cell. 1999 Feb 5;96(3):341-52 [PMID: 10025400]
  53. Mol Cell. 2004 Jul 2;15(1):129-39 [PMID: 15225554]
  54. Biol Chem. 2007 Oct;388(10):997-1006 [PMID: 17937613]
  55. Mol Cell Biol. 2002 Jun;22(11):3565-76 [PMID: 11997494]
  56. Proteins. 2004 Jul 1;56(1):102-9 [PMID: 15162490]
  57. Annu Rev Genet. 2003;37:91-121 [PMID: 14616057]
  58. Curr Opin Struct Biol. 2002 Aug;12(4):441-6 [PMID: 12163065]
  59. Antioxid Redox Signal. 2006 Sep-Oct;8(9-10):1419-41 [PMID: 16987000]
  60. Proteins. 2006 Mar 15;62(3):617-29 [PMID: 16320312]
  61. Antioxid Redox Signal. 2008 Jan;10(1):157-69 [PMID: 17956189]
  62. Nucleic Acids Res. 2008 Jan;36(Database issue):D245-9 [PMID: 18003654]
  63. J Mol Biol. 2004 Sep 3;342(1):307-20 [PMID: 15313626]
  64. Nat Rev Mol Cell Biol. 2005 Feb;6(2):150-66 [PMID: 15688001]
  65. Bioinformatics. 2010 Mar 1;26(5):700-2 [PMID: 20053843]
  66. FASEB J. 2004 Nov;18(14):1782-4 [PMID: 15371330]
  67. Nature. 2003 Jun 12;423(6941):769-73 [PMID: 12802338]
  68. Proteins. 2004 Jun 1;55(4):1036-42 [PMID: 15146500]
  69. J Mol Biol. 2010 Jan 29;395(4):844-59 [PMID: 19854201]
  70. Biochim Biophys Acta. 1997 Dec 31;1362(2-3):232-42 [PMID: 9540854]
  71. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4170-4 [PMID: 8633035]
  72. Appl Bioinformatics. 2002;1(2):107-8 [PMID: 15130850]
  73. Proc Natl Acad Sci U S A. 2002 Jul 23;99(15):9679-84 [PMID: 12107280]
  74. Nat Rev Mol Cell Biol. 2007 Oct;8(10):813-24 [PMID: 17848967]
  75. Antioxid Redox Signal. 2011 Mar 15;14(6):1023-37 [PMID: 20649472]
  76. Protein Sci. 1993 Oct;2(10):1551-8 [PMID: 8251931]
  77. Proc Natl Acad Sci U S A. 2006 May 9;103(19):7420-5 [PMID: 16648260]
  78. Biochem Biophys Res Commun. 2004 May 21;318(1):142-7 [PMID: 15110765]
  79. Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W177-81 [PMID: 16844986]
  80. Biochemistry. 2006 Nov 21;45(46):13697-704 [PMID: 17105189]
  81. Antioxid Redox Signal. 2010 May 15;12(10):1167-78 [PMID: 19769462]
  82. Int J Neural Syst. 2005 Feb-Apr;15(1-2):71-84 [PMID: 15912584]
  83. J Mol Biol. 2001 Jul 6;310(2):449-70 [PMID: 11428900]
  84. PLoS Biol. 2005 Dec;3(12):e375 [PMID: 16262444]
  85. J Mol Evol. 1987;26(3):257-67 [PMID: 3129571]
  86. Sci STKE. 2000 Oct 10;2000(53):pe1 [PMID: 11752613]
  87. Protein Sci. 2008 Feb;17(2):299-312 [PMID: 18227433]
  88. Proc Natl Acad Sci U S A. 2006 Jan 24;103(4):1012-7 [PMID: 16418269]
  89. Bioinformatics. 2000 Oct;16(10):851-64 [PMID: 11120676]
  90. Science. 2008 Oct 24;322(5901):587-90 [PMID: 18948540]
  91. PLoS Comput Biol. 2009 May;5(5):e1000383 [PMID: 19424433]
  92. Basic Res Cardiol. 2006 Jan;101(1):53-60 [PMID: 16328106]
  93. J Mol Biol. 2000 Jul 21;300(4):975-85 [PMID: 10891282]
  94. J Mol Biol. 1999 Jul 2;290(1):267-81 [PMID: 10388572]
  95. Proteomics. 2008 Nov;8(21):4484-94 [PMID: 18846506]
  96. Nature. 2004 Aug 19;430(7002):917-21 [PMID: 15318225]
  97. ACS Chem Biol. 2009 Sep 18;4(9):783-99 [PMID: 19645509]
  98. J Mol Biol. 2003 Nov 28;334(3):387-401 [PMID: 14623182]
  99. Antioxid Redox Signal. 2009 May;11(5):1015-27 [PMID: 19132878]
  100. Annu Rev Pharmacol Toxicol. 2004;44:325-47 [PMID: 14744249]
  101. Cell. 2002 Nov 15;111(4):471-81 [PMID: 12437921]
  102. J Biol Chem. 2000 Dec 8;275(49):38302-10 [PMID: 10976105]

Grants

  1. GM065204/NIGMS NIH HHS

MeSH Term

Animals
Computational Biology
Cysteine
Humans
Oxidation-Reduction

Chemicals

Cysteine

Word Cloud

Created with Highcharts 10.0.0CysresiduesfunctionalcategoriesproteinsubjectcomputationaltoolsdifferentbioinformaticsapproachessuccessfulinvestigationCysteineservemanyfunctionscatalysisstabilizationstructuredisulfidesmetalbindingregulationfunctionalsonumerouspost-translationalmodificationsrecentyearsvariousaimingclassifyingpredictingdevelopedparticularlystructuralcatalytichandgivencomplexitylessregulatorysitesreviewintroducecategoryoverviewstate-of-the-artmethodsprovidedalongexamplesapplicationspotentiallimitationsassociatedapproachFinallydiscussCys-basedredoxswitchesmodifyviewdistinctproteinsRedoxbiology:cysteine

Similar Articles

Cited By