Distinct retinal deficits in a zebrafish pyruvate dehydrogenase-deficient mutant.

Colette M Maurer, Helia B Schönthaler, Kaspar P Mueller, Stephan C F Neuhauss
Author Information
  1. Colette M Maurer: University of Zurich, Institute of Molecular Life Sciences, Neuroscience Center Zurich and Center for Integrative Human Physiology, Zurich, Switzerland.

Abstract

Mutations in ubiquitously expressed metabolic genes often lead to CNS-specific effects, presumably because of the high metabolic demands of neurons. However, mutations in omnipresent metabolic pathways can conceivably also result in cell type-specific effects because of cell-specific requirements for intermediate products. One such example is the zebrafish noir mutant, which we found to be mutated in the pdhb gene, coding for the E1 beta subunit of the pyruvate dehydrogenase complex. This vision mutant is described as blind and was isolated because of its vision defect-related darker appearance. A detailed morphological, behavioral, and physiological analysis of the phenotype revealed an unexpected specific effect on the retina. Surprisingly, the cholinergic amacrine cells of the inner retina are affected earlier than the photoreceptors. This might be attributable to the inability of these cells to maintain production of their neurotransmitter acetylcholine. This is reflected in an earlier loss of motion vision, followed only later by a general loss of light perception. Since both characteristics of the phenotype are attributable to a loss of acetyl-CoA production by pyruvate dehydrogenase, we used a ketogenic diet to bypass this metabolic block and could indeed partially rescue vision and prolong survival of the larvae. The noir mutant provides a case for a systemic disease with ocular manifestation with a surprising specific effect on the retina given the ubiquitous requirement for the mutated gene.

References

  1. Neuron. 2007 Jul 19;55(2):179-86 [PMID: 17640521]
  2. J Vis Exp. 2008 Oct 03;(20): [PMID: 19078942]
  3. J Neurocytol. 2001 Jul;30(7):551-92 [PMID: 12118162]
  4. Dev Biol. 2002 Aug 15;248(2):307-18 [PMID: 12167406]
  5. Brain Res. 2005 Oct 5;1058(1-2):17-29 [PMID: 16150425]
  6. Brain Res Bull. 2005 Sep 15;66(4-6):421-5 [PMID: 16144624]
  7. Exp Eye Res. 2007 Aug;85(2):175-84 [PMID: 17618621]
  8. Invest Ophthalmol Vis Sci. 1976 Sep;15(9):700-25 [PMID: 986765]
  9. J Physiol. 2008 Sep 15;586(18):4371-6 [PMID: 18617561]
  10. Mol Genet Metab. 2001 Nov;74(3):293-302 [PMID: 11708858]
  11. Invest Ophthalmol Vis Sci. 2005 Jan;46(1):137-42 [PMID: 15623766]
  12. J Neurosci Methods. 2010 Jan 30;186(1):29-34 [PMID: 19900474]
  13. Curr Biol. 2010 Feb 23;20(4):381-6 [PMID: 20153194]
  14. Invest Ophthalmol Vis Sci. 1987 Dec;28(12):1888-904 [PMID: 3316105]
  15. Curr Opin Neurobiol. 2001 Aug;11(4):475-80 [PMID: 11502395]
  16. J Neurol Neurosurg Psychiatry. 1951 Aug;14(3):216-21 [PMID: 14874135]
  17. PLoS One. 2008 Jul 23;3(7):e2748 [PMID: 18648503]
  18. J Biol Chem. 1994 Jul 8;269(27):17954-9 [PMID: 8027053]
  19. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14512-7 [PMID: 9405644]
  20. J Neurophysiol. 2005 Jan;93(1):84-93 [PMID: 15229213]
  21. Dis Model Mech. 2010 May-Jun;3(5-6):343-53 [PMID: 20335444]
  22. Neuron. 2001 Jun;30(3):771-80 [PMID: 11430810]
  23. Science. 1999 Mar 5;283(5407):1482-8 [PMID: 10066162]
  24. Trends Cardiovasc Med. 2009 Feb;19(2):38-43 [PMID: 19577710]
  25. Exp Eye Res. 2009 Mar;88(3):553-60 [PMID: 19084520]
  26. J Neurophysiol. 1996 Dec;76(6):3842-9 [PMID: 8985882]
  27. J Neurosci. 1992 Mar;12(3):840-53 [PMID: 1312136]
  28. Prog Retin Eye Res. 1998 Jul;17(3):429-42 [PMID: 9695799]
  29. Vision Res. 1998 May;38(10):1335-9 [PMID: 9667001]
  30. J Inherit Metab Dis. 2009 Dec;32 Suppl 1:S339-43 [PMID: 19924563]
  31. J Neurosci Methods. 2004 May 30;135(1-2):205-10 [PMID: 15020104]
  32. Trends Neurosci. 2005 Aug;28(8):395-6 [PMID: 15979167]
  33. Zebrafish. 2004;1(2):121-31 [PMID: 18248224]
  34. J Neurosci. 1995 Jul;15(7 Pt 2):5179-91 [PMID: 7623144]
  35. Curr Biol. 2008 Dec 23;18(24):1917-21 [PMID: 19084410]
  36. Curr Opin Neurobiol. 2002 Aug;12(4):405-10 [PMID: 12139988]
  37. Dev Biol. 2005 Sep 1;285(1):138-55 [PMID: 16231865]
  38. Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4584-9 [PMID: 15070761]
  39. Proc Natl Acad Sci U S A. 1995 Nov 7;92(23):10545-9 [PMID: 7479837]
  40. Nature. 2005 Dec 15;438(7070):960-6 [PMID: 16355161]
  41. Invest Ophthalmol Vis Sci. 2000 Feb;41(2):337-48 [PMID: 10670460]
  42. J Neurophysiol. 2005 Jan;93(1):94-107 [PMID: 15229214]
  43. J Neurosci. 1999 Oct 1;19(19):8603-15 [PMID: 10493760]
  44. Development. 1996 Dec;123:1-36 [PMID: 9007226]
  45. Development. 1996 Dec;123:369-89 [PMID: 9007256]
  46. J Physiol. 2009 Sep 15;587(Pt 18):4481-95 [PMID: 19651763]
  47. J Neurophysiol. 2008 Oct;100(4):1995-2004 [PMID: 18684905]

MeSH Term

Aminobutyrates
Analysis of Variance
Animals
Animals, Genetically Modified
Aspartic Acid
Choline O-Acetyltransferase
DNA Mutational Analysis
Diet, Ketogenic
Disease Models, Animal
Electroretinography
Embryo, Nonmammalian
Excitatory Amino Acid Agonists
Larva
Movement
Mutation
Nystagmus, Optokinetic
Photic Stimulation
Pyruvate Decarboxylase
Retina
Retinal Diseases
Tyrosine 3-Monooxygenase
Zebrafish
Zebrafish Proteins

Chemicals

Aminobutyrates
Excitatory Amino Acid Agonists
Zebrafish Proteins
benzyloxyaspartate
Aspartic Acid
Tyrosine 3-Monooxygenase
Choline O-Acetyltransferase
Pyruvate Decarboxylase
2-amino-4-phosphonobutyric acid

Word Cloud

Created with Highcharts 10.0.0metabolicmutantvisionpyruvateretinalosseffectszebrafishnoirmutatedgenedehydrogenasephenotypespecificeffectcellsearlierattributableproductionMutationsubiquitouslyexpressedgenesoftenleadCNS-specificpresumablyhighdemandsneuronsHowevermutationsomnipresentpathwayscanconceivablyalsoresultcelltype-specificcell-specificrequirementsintermediateproductsOneexamplefoundpdhbcodingE1betasubunitcomplexdescribedblindisolateddefect-relateddarkerappearancedetailedmorphologicalbehavioralphysiologicalanalysisrevealedunexpectedSurprisinglycholinergicamacrineinneraffectedphotoreceptorsmightinabilitymaintainneurotransmitteracetylcholinereflectedmotionfollowedlatergenerallightperceptionSincecharacteristicsacetyl-CoAusedketogenicdietbypassblockindeedpartiallyrescueprolongsurvivallarvaeprovidescasesystemicdiseaseocularmanifestationsurprisinggivenubiquitousrequirementDistinctretinaldeficitsdehydrogenase-deficient

Similar Articles

Cited By (23)