Laser stimulation of single auditory nerve fibers.

Philip D Littlefield, Irena Vujanovic, Jagmeet Mundi, Agnella Izzo Matic, Claus-Peter Richter
Author Information
  1. Philip D Littlefield: Department of Surgery, ENT Section, Walter Reed Army Medical Center, Washington, DC 20307-5001, USA.

Abstract

OBJECTIVES/HYPOTHESIS: One limitation with cochlear implants is the difficulty stimulating spatially discrete spiral ganglion cell groups because of electrode interactions. Multipolar electrodes have improved on this some, but also at the cost of much higher device power consumption. Recently, it has been shown that spatially selective stimulation of the auditory nerve is possible with a mid-infrared laser aimed at the spiral ganglion via the round window. However, these neurons must be driven at adequate rates for optical radiation to be useful in cochlear implants. We herein use single-fiber recordings to characterize the responses of auditory neurons to optical radiation.
STUDY DESIGN: In vivo study using normal-hearing adult gerbils.
METHODS: Two diode lasers were used for stimulation of the auditory nerve. They operated between 1.844 μm and 1.873 μm, with pulse durations of 35 μs to 1,000 μs, and at repetition rates up to 1,000 pulses per second (pps). The laser outputs were coupled to a 200-μm-diameter optical fiber placed against the round window membrane and oriented toward the spiral ganglion. The auditory nerve was exposed through a craniotomy, and recordings were taken from single fibers during acoustic and laser stimulation.
RESULTS: Action potentials occurred 2.5 ms to 4.0 ms after the laser pulse. The latency jitter was up to 3 ms. Maximum rates of discharge averaged 97 ± 52.5 action potentials per second. The neurons did not strictly respond to the laser at stimulation rates over 100 pps.
CONCLUSIONS: Auditory neurons can be stimulated by a laser beam passing through the round window membrane and driven at rates sufficient for useful auditory information. Optical stimulation and electrical stimulation have different characteristics; which could be selectively exploited in future cochlear implants.

References

  1. J Comp Physiol A. 1990 Aug;167(3):329-38 [PMID: 2231475]
  2. Hear Res. 1983 Oct;12(1):1-16 [PMID: 6689326]
  3. IEEE Trans Biomed Eng. 2001 Apr;48(4):416-24 [PMID: 11322529]
  4. Hear Res. 2000 Feb;140(1-2):45-76 [PMID: 10675635]
  5. Hear Res. 2008 Aug;242(1-2):42-51 [PMID: 18321670]
  6. J Assoc Res Otolaryngol. 2004 Mar;5(1):32-48 [PMID: 14564662]
  7. Hear Res. 1984 Jun;14(3):225-43 [PMID: 6480511]
  8. Ear Hear. 2000 Dec;21(6):608-24 [PMID: 11132787]
  9. Ann Otol Rhinol Laryngol. 1972 Oct;81(5):714-30 [PMID: 4651114]
  10. J Assoc Res Otolaryngol. 2006 Sep;7(3):195-210 [PMID: 16708257]
  11. Hear Res. 1987 Dec 31;31(3):267-85 [PMID: 3436853]
  12. Hear Res. 1984 Jan;13(1):47-62 [PMID: 6546751]
  13. Opt Lett. 2005 Mar 1;30(5):504-6 [PMID: 15789717]
  14. Hear Res. 2008 Jan;235(1-2):23-38 [PMID: 18037252]
  15. Trends Amplif. 2009 Jun;13(2):76-86 [PMID: 19447763]
  16. J Assoc Res Otolaryngol. 2001 Sep;2(3):216-32 [PMID: 11669395]
  17. Hear Res. 1987;29(2-3):195-206 [PMID: 3624083]
  18. J Acoust Soc Am. 2000 Jan;107(1):589-97 [PMID: 10641667]
  19. Hear Res. 1983 Aug;11(2):157-89 [PMID: 6619003]
  20. Hear Res. 2004 Aug;194(1-2):1-13 [PMID: 15276671]
  21. Hear Res. 1999 Apr;130(1-2):171-88 [PMID: 10320107]
  22. Lasers Surg Med. 2006 Sep;38(8):745-53 [PMID: 16871623]
  23. J Assoc Res Otolaryngol. 2008 Mar;9(1):122-37 [PMID: 18204987]
  24. Acta Otolaryngol Suppl. 1978;358:1-63 [PMID: 281107]
  25. J Acoust Soc Am. 1974 Dec;56(6):1835-47 [PMID: 4443483]
  26. Biophys J. 2008 Apr 15;94(8):3159-66 [PMID: 18192375]
  27. IEEE Trans Biomed Eng. 2007 Jun;54(6 Pt 1):1108-14 [PMID: 17554829]
  28. Hear Res. 1998 Jul;121(1-2):11-28 [PMID: 9682804]
  29. Acta Otolaryngol. 2010;130(1):102-7 [PMID: 19424919]
  30. Hear Res. 1997 Jun;108(1-2):112-44 [PMID: 9213127]
  31. Hear Res. 1992 Feb;58(1):79-90 [PMID: 1559909]
  32. Ann Otol Rhinol Laryngol Suppl. 2000 Dec;185:51-3 [PMID: 11141002]
  33. Hear Res. 1989 Sep;41(2-3):137-68 [PMID: 2808146]
  34. J Biomed Opt. 2007 Mar-Apr;12(2):021008 [PMID: 17477715]
  35. Ann Otol Rhinol Laryngol Suppl. 2003 Sep;191:14-9 [PMID: 14533839]
  36. J Neurophysiol. 1967 Jul;30(4):769-93 [PMID: 4962851]
  37. Int J Audiol. 2005 Jan;44(1):58-63 [PMID: 15796103]
  38. Hear Res. 1999 Apr;130(1-2):197-218 [PMID: 10320109]

Grants

  1. N01 DC060006/NIDCD NIH HHS
  2. F31 DC008246-01/NIDCD NIH HHS
  3. F31 DC008246/NIDCD NIH HHS
  4. R41 DC008515-01/NIDCD NIH HHS
  5. N01-DC-6-0006/NIDCD NIH HHS
  6. R41 DC008515/NIDCD NIH HHS

MeSH Term

Acoustic Stimulation
Action Potentials
Animals
Cochlear Implants
Cochlear Nerve
Gerbillinae
Lasers, Semiconductor
Nerve Fibers

Word Cloud

Created with Highcharts 10.0.0stimulationauditorylaserratesnerveneurons1cochlearimplantsspiralganglionroundwindowopticalmsspatiallydrivenradiationusefulrecordingsμmpulseμs000persecondppsmembranesinglefiberspotentials5OBJECTIVES/HYPOTHESIS:OnelimitationdifficultystimulatingdiscretecellgroupselectrodeinteractionsMultipolarelectrodesimprovedalsocostmuchhigherdevicepowerconsumptionRecentlyshownselectivepossiblemid-infraredaimedviaHowevermustadequatehereinusesingle-fibercharacterizeresponsesSTUDYDESIGN:vivostudyusingnormal-hearingadultgerbilsMETHODS:Twodiodelasersusedoperated844873durations35repetitionpulsesoutputscoupled200-μm-diameterfiberplacedorientedtowardexposedcraniotomytakenacousticRESULTS:Actionoccurred240latencyjitter3Maximumdischargeaveraged97±52actionstrictlyrespond100CONCLUSIONS:AuditorycanstimulatedbeampassingsufficientinformationOpticalelectricaldifferentcharacteristicsselectivelyexploitedfutureLaser

Similar Articles

Cited By (20)