The renaissance of continuous culture in the post-genomics age.

Alan T Bull
Author Information
  1. Alan T Bull: School of Biosciences, University of Kent, Canterbury, Kent CT27NJ, UK. A.T.Bull@kent.ac.uk

Abstract

The development of continuous culture techniques 60 years ago and the subsequent formulation of theory and the diversification of experimental systems revolutionised microbiology and heralded a unique period of innovative research. Then, progressively, molecular biology and thence genomics and related high-information-density omics technologies took centre stage and microbial growth physiology in general faded from educational programmes and research funding priorities alike. However, there has been a gathering appreciation over the past decade that if the claims of systems biology are going to be realised, they will have to be based on rigorously controlled and reproducible microbial and cell growth platforms. This revival of continuous culture will be long lasting because its recognition as the growth system of choice is firmly established. The purpose of this review, therefore, is to remind microbiologists, particularly those new to continuous culture approaches, of the legacy of what I call the first age of continuous culture, and to explore a selection of researches that are using these techniques in this post-genomics age. The review looks at the impact of continuous culture across a comprehensive range of microbiological research and development. The ability to establish (quasi-) steady state conditions is a frequently stated advantage of continuous cultures thereby allowing environmental parameters to be manipulated without causing concomitant changes in the specific growth rate. However, the use of continuous cultures also enables the critical study of specified transition states and chemical, physical or biological perturbations. Such dynamic analyses enhance our understanding of microbial ecology and microbial pathology for example, and offer a wider scope for innovative drug discovery; they also can inform the optimization of batch and fed-batch operations that are characterized by sequential transitions states.

References

  1. PLoS One. 2009 Apr 28;4(4):e5349 [PMID: 19479006]
  2. BMC Microbiol. 2009 Jan 29;9:18 [PMID: 19175941]
  3. Appl Environ Microbiol. 2007 Dec;73(23):7680-92 [PMID: 17933919]
  4. Biotechnol Prog. 2008 Nov-Dec;24(6):1402-7 [PMID: 19194955]
  5. Metab Eng. 2007 Jan;9(1):112-23 [PMID: 17008114]
  6. Appl Environ Microbiol. 2007 Sep;73(17):5421-5 [PMID: 17616621]
  7. J Bacteriol. 1946 Sep;52(3):283-92 [PMID: 16561176]
  8. Environ Microbiol. 2009 Sep;11(9):2425-33 [PMID: 19638178]
  9. Nat Methods. 2005 Sep;2(9):685-9 [PMID: 16118639]
  10. Proteomics. 2008 Apr;8(8):1645-60 [PMID: 18409167]
  11. Methods Enzymol. 2008;437:499-519 [PMID: 18433644]
  12. J Gen Microbiol. 1970 Nov;63(3):357-66 [PMID: 5516438]
  13. Microb Ecol. 1998 Mar;35(2):180-7 [PMID: 9541554]
  14. Science. 2007 Apr 27;316(5824):593-7 [PMID: 17379776]
  15. J Bacteriol. 2008 Apr;190(7):2323-30 [PMID: 18223071]
  16. J Bacteriol. 2005 Mar;187(5):1677-84 [PMID: 15716438]
  17. BMC Genomics. 2009 Sep 02;10:410 [PMID: 19725962]
  18. Proc Natl Acad Sci U S A. 1999 Aug 17;96(17):9721-6 [PMID: 10449761]
  19. Appl Environ Microbiol. 2005 Sep;71(9):5572-6 [PMID: 16151150]
  20. Fungal Genet Biol. 2010 Jan;47(1):33-42 [PMID: 19833221]
  21. BMC Genomics. 2006 Oct 02;7:247 [PMID: 17010217]
  22. Nat Rev Microbiol. 2007 Mar;5(3):209-18 [PMID: 17304250]
  23. Proc Natl Acad Sci U S A. 2007 May 22;104(21):8930-4 [PMID: 17502615]
  24. FEBS J. 2010 Feb;277(3):749-60 [PMID: 20067525]
  25. BMC Genomics. 2007 Jan 22;8:25 [PMID: 17241460]
  26. Microbiology (Reading). 2010 Mar;156(Pt 3):774-788 [PMID: 20007650]
  27. Infect Immun. 1978 Feb;19(2):434-42 [PMID: 24590]
  28. J Mol Microbiol Biotechnol. 2007;13(1-3):1-11 [PMID: 17693707]
  29. J Biol Chem. 2006 Sep 22;281(38):27806-15 [PMID: 16857675]
  30. Proc R Soc Lond B Biol Sci. 1965 Oct 12;163(991):224-31 [PMID: 4378482]
  31. Biotechnol Bioeng. 1999 Mar 5;62(5):576-82 [PMID: 10099566]
  32. FEBS Lett. 1972 Oct 15;27(1):16-18 [PMID: 11946796]
  33. Mol Syst Biol. 2006;2:2006.0026 [PMID: 16738570]
  34. Science. 2005 Jul 1;309(5731):137-40 [PMID: 15994559]
  35. Science. 1950 Dec 15;112(2920):715-6 [PMID: 14787503]
  36. J Antimicrob Chemother. 2006 Nov;58(5):1062-5 [PMID: 17030519]
  37. J Microbiol Biotechnol. 2009 Jul;19(7):698-708 [PMID: 19652518]
  38. Res Microbiol. 1999 Sep;150(7):431-8 [PMID: 10540906]
  39. Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15918-23 [PMID: 14663145]
  40. Proteome Sci. 2009 Sep 21;7:36 [PMID: 19772559]
  41. Adv Microb Physiol. 1977;15:1-84 [PMID: 333875]
  42. Nat Genet. 2008 Jan;40(1):113-7 [PMID: 18157128]
  43. Am Nat. 2008 Nov;172(5):169-85 [PMID: 18828745]
  44. Genome Biol. 2007;8(5):R89 [PMID: 17521419]
  45. Proc Natl Acad Sci U S A. 2005 Mar 22;102(12):4393-6 [PMID: 15753284]
  46. J Chem Ecol. 2010 Mar;36(3):339-49 [PMID: 20186470]
  47. J Proteome Res. 2007 Apr;6(4):1540-59 [PMID: 17373844]
  48. Microbiology (Reading). 2007 Jan;153(Pt 1):148-59 [PMID: 17185543]
  49. Proc Biol Sci. 2009 Mar 22;276(1659):999-1008 [PMID: 19129121]
  50. Antimicrob Agents Chemother. 2009 Feb;53(2):412-20 [PMID: 18710908]
  51. Trends Biotechnol. 2008 Jul;26(7):345-7 [PMID: 18453020]
  52. Am Nat. 2001 Mar;157(3):300-15 [PMID: 18707291]
  53. Proc Biol Sci. 2007 Apr 22;274(1613):1063-70 [PMID: 17264057]
  54. Philos Trans R Soc Lond B Biol Sci. 2010 Jan 12;365(1537):207-12 [PMID: 20008397]
  55. Mol Biol Cell. 2008 Jan;19(1):352-67 [PMID: 17959824]
  56. Anaerobe. 2007 Jun-Aug;13(3-4):146-52 [PMID: 17540586]
  57. J Gen Microbiol. 1956 Jul;14(3):601-22 [PMID: 13346021]
  58. Metab Eng. 2002 Apr;4(2):138-50 [PMID: 12009793]
  59. FEMS Yeast Res. 2009 Mar;9(2):191-201 [PMID: 19220865]
  60. Mol Biosyst. 2006 Feb;2(2):97-112 [PMID: 16880927]
  61. Microbiology (Reading). 1997 Nov;143 ( Pt 11):3573-3579 [PMID: 9387236]
  62. J Gen Microbiol. 1981 Dec;127(2):261-8 [PMID: 7045277]
  63. Microbiology (Reading). 2009 Apr;155(Pt 4):1340-1350 [PMID: 19332835]
  64. Mol Biol Cell. 2010 Jan 1;21(1):198-211 [PMID: 19889834]
  65. Arch Microbiol. 2008 Apr;189(4):313-24 [PMID: 18030449]
  66. Biotechnol Bioeng. 2009 Jan 1;102(1):221-31 [PMID: 18781685]
  67. Lab Chip. 2006 Jul;6(7):906-13 [PMID: 16804595]
  68. Proc Natl Acad Sci U S A. 2004 Aug 10;101(32):11719-24 [PMID: 15289609]
  69. J Theor Biol. 2010 Feb 7;262(3):517-27 [PMID: 19878684]
  70. Science. 2010 May 14;328(5980):852-6 [PMID: 20466922]
  71. Expert Rev Anti Infect Ther. 2010 May;8(5):555-64 [PMID: 20455684]
  72. Dig Dis. 2009;27 Suppl 1:90-8 [PMID: 20203503]
  73. Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):4236-41 [PMID: 20160096]
  74. J Biol Chem. 2004 Mar 5;279(10):9125-38 [PMID: 14630934]
  75. Environ Microbiol. 2009 Aug;11(8):1971-82 [PMID: 19508553]
  76. BMC Biotechnol. 2009 Aug 26;9:74 [PMID: 19709419]
  77. Biotechnol Bioeng. 2009 Aug 1;103(5):956-65 [PMID: 19382249]
  78. Lab Pract. 1973 Apr;22(4):286-9 [PMID: 4572753]
  79. Biotechnol Bioeng. 1989 Aug 20;34(5):592-9 [PMID: 18588143]
  80. Int J Syst Evol Microbiol. 2010 Jan;60(Pt 1):33-38 [PMID: 19648352]
  81. Science. 2010 May 14;328(5980):856-61 [PMID: 20466923]
  82. Microbiology (Reading). 2008 Jun;154(Pt 6):1686-1699 [PMID: 18524923]
  83. Microbiology (Reading). 2009 May;155(Pt 5):1699-1707 [PMID: 19359324]
  84. Appl Environ Microbiol. 2008 Jul;74(14):4256-63 [PMID: 18502917]
  85. PLoS Genet. 2008 Dec;4(12):e1000303 [PMID: 19079573]
  86. Talanta. 2005 Mar 15;65(5):1254-63 [PMID: 18969939]
  87. J Bacteriol. 2008 Mar;190(6):2198-205 [PMID: 18203827]
  88. J Bacteriol. 2007 Jun;189(11):3969-76 [PMID: 17384194]
  89. Adv Microb Physiol. 2008;53:169-229 [PMID: 17707145]
  90. Appl Microbiol Biotechnol. 2007 Nov;77(2):489-96 [PMID: 17896105]
  91. Proc Natl Acad Sci U S A. 1950 Dec;36(12):708-19 [PMID: 14808160]
  92. J Math Biol. 2007 Oct;55(4):541-73 [PMID: 17483952]
  93. Mol Biol Evol. 2009 Dec;26(12):2661-78 [PMID: 19706726]
  94. J Biol Chem. 2006 Dec 29;281(52):40041-8 [PMID: 17062565]
  95. Nature. 1976 Oct 7;263(5577):476-9 [PMID: 972691]
  96. Extremophiles. 2007 Nov;11(6):747-57 [PMID: 17576518]
  97. Appl Environ Microbiol. 2009 Sep;75(17):5607-14 [PMID: 19592533]
  98. J Biotechnol. 2006 Nov 1;126(2):163-72 [PMID: 16716427]
  99. Antonie Van Leeuwenhoek. 2002 Aug;81(1-4):117-33 [PMID: 12448711]
  100. Biotechnol Bioeng. 2009 Jun 15;103(3):500-12 [PMID: 19241387]
  101. Arch Microbiol. 1976 Nov 2;110(23):305-11 [PMID: 1015953]
  102. Biotechnol Bioeng. 2009 Feb 15;102(3):910-22 [PMID: 18975303]
  103. Genome Biol. 2007;8(7):R136 [PMID: 17617894]
  104. Science. 2006 Jul 28;313(5786):514-7 [PMID: 16825532]
  105. Microbiology (Reading). 2006 May;152(Pt 5):1247-1248 [PMID: 16622042]
  106. Nat Prod Rep. 2007 Dec;24(6):1262-87 [PMID: 18033579]
  107. Microb Ecol. 2007 Jan;53(1):66-73 [PMID: 17186152]
  108. Anal Chem. 2009 Sep 1;81(17):7379-89 [PMID: 19653633]
  109. Microb Ecol. 2007 May;53(4):513-23 [PMID: 17333428]
  110. Microbiology (Reading). 2005 May;151(Pt 5):1657-1669 [PMID: 15870473]
  111. PLoS Comput Biol. 2008 Dec;4(12):e1000236 [PMID: 19057639]
  112. J Magn Reson. 2008 May;192(1):159-66 [PMID: 18314365]
  113. J Biotechnol. 2010 Jan 1;145(1):60-5 [PMID: 19861135]
  114. J Gen Microbiol. 1993 Nov;139(11):2811-7 [PMID: 8277261]
  115. Ecology. 2008 Mar;89(3):865-77 [PMID: 18459349]
  116. Infect Immun. 2007 Mar;75(3):1473-83 [PMID: 17210664]
  117. Yeast. 2008 Sep;25(9):661-72 [PMID: 18727146]
  118. Mol Biol Cell. 2007 Dec;18(12):5100-12 [PMID: 17928405]
  119. Genetics. 2006 Apr;172(4):2071-9 [PMID: 16489226]
  120. FEBS J. 2009 Jan;276(1):254-70 [PMID: 19087200]
  121. BMC Genomics. 2009 Feb 10;10:75 [PMID: 19203396]
  122. Adv Microb Physiol. 2009;54:257-311 [PMID: 18929070]
  123. Biotechnol Bioeng. 2008 Dec 1;101(5):1022-35 [PMID: 18942773]
  124. BMC Genomics. 2006 Feb 22;7:32 [PMID: 16504068]
  125. J Ind Microbiol Biotechnol. 2010 Jan;37(1):43-55 [PMID: 19821132]
  126. Microb Ecol. 2009 Aug;58(2):231-43 [PMID: 19184185]
  127. J Bacteriol. 2009 Feb;191(3):1044-55 [PMID: 19028886]
  128. Metab Eng. 2008 Sep;10(5):227-33 [PMID: 18611443]
  129. Microbiology (Reading). 1994 Sep;140 ( Pt 9):2181-8 [PMID: 7952168]
  130. Microbiology (Reading). 2007 Oct;153(Pt 10):3323-3336 [PMID: 17906132]
  131. Trends Genet. 2009 Jan;25(1):5-8 [PMID: 19010565]
  132. Proc Natl Acad Sci U S A. 2007 Nov 13;104(46):18217-22 [PMID: 17989237]
  133. Ecol Lett. 2008 Nov;11(11):1178-1188 [PMID: 18647331]
  134. Appl Environ Microbiol. 2009 Nov;75(21):6876-85 [PMID: 19734328]

MeSH Term

Bacteria
Biomedical Research
Fungi
Genomics
History, 20th Century
History, 21st Century
Microbiological Techniques
Systems Biology

Word Cloud

Created with Highcharts 10.0.0continuousculturemicrobialgrowthresearchagedevelopmenttechniquessystemsinnovativebiologyHoweverwillreviewpost-genomicsculturesalsostates60 yearsagosubsequentformulationtheorydiversificationexperimentalrevolutionisedmicrobiologyheraldeduniqueperiodprogressivelymolecularthencegenomicsrelatedhigh-information-densityomicstechnologiestookcentrestagephysiologygeneralfadededucationalprogrammesfundingprioritiesalikegatheringappreciationpastdecadeclaimsgoingrealisedbasedrigorouslycontrolledreproduciblecellplatformsrevivallonglastingrecognitionsystemchoicefirmlyestablishedpurposethereforeremindmicrobiologistsparticularlynewapproacheslegacycallfirstexploreselectionresearchesusinglooksimpactacrosscomprehensiverangemicrobiologicalabilityestablishquasi-steadystateconditionsfrequentlystatedadvantagetherebyallowingenvironmentalparametersmanipulatedwithoutcausingconcomitantchangesspecificrateuseenablescriticalstudyspecifiedtransitionchemicalphysicalbiologicalperturbationsdynamicanalysesenhanceunderstandingecologypathologyexampleofferwiderscopedrugdiscoverycaninformoptimizationbatchfed-batchoperationscharacterizedsequentialtransitionsrenaissance

Similar Articles

Cited By