Understanding the physiology of Lactobacillus plantarum at zero growth.

Philippe Goffin, Bert van de Bunt, Marco Giovane, Johan H J Leveau, Sachie Höppener-Ogawa, Bas Teusink, Jeroen Hugenholtz
Author Information
  1. Philippe Goffin: Kluyver Centre for Genomics of Industrial Fermentations, Delft, The Netherlands.

Abstract

Situations of extremely low substrate availability, resulting in slow growth, are common in natural environments. To mimic these conditions, Lactobacillus plantarum was grown in a carbon-limited retentostat with complete biomass retention. The physiology of extremely slow-growing L. plantarum--as studied by genome-scale modeling and transcriptomics--was fundamentally different from that of stationary-phase cells. Stress resistance mechanisms were not massively induced during transition to extremely slow growth. The energy-generating metabolism was remarkably stable and remained largely based on the conversion of glucose to lactate. The combination of metabolic and transcriptomic analyses revealed behaviors involved in interactions with the environment, more particularly with plants: production of plant hormones or precursors thereof, and preparedness for the utilization of plant-derived substrates. Accordingly, the production of compounds interfering with plant root development was demonstrated in slow-growing L. plantarum. Thus, conditions of slow growth and limited substrate availability seem to trigger a plant environment-like response, even in the absence of plant-derived material, suggesting that this might constitute an intrinsic behavior in L. plantarum.

Associated Data

GEO | GSE18340

References

  1. Appl Environ Microbiol. 2002 Sep;68(9):4274-82 [PMID: 12200276]
  2. Nat Genet. 2004 Oct;36(10):1056-8 [PMID: 15448692]
  3. Appl Environ Microbiol. 2006 Dec;72(12):7933-40 [PMID: 17012588]
  4. Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1990-5 [PMID: 12566566]
  5. Annu Rev Microbiol. 1984;38:459-86 [PMID: 6388498]
  6. Biotechnol Bioeng. 1989 Aug 20;34(5):592-9 [PMID: 18588143]
  7. Arch Microbiol. 1991;155(4):391-5 [PMID: 2048936]
  8. J Biol Chem. 2006 Dec 29;281(52):40041-8 [PMID: 17062565]
  9. J Bacteriol. 1979 Aug;139(2):625-38 [PMID: 378981]
  10. BMC Genomics. 2008 Jul 14;9:330 [PMID: 18625071]
  11. Nat Rev Microbiol. 2006 Feb;4(2):113-20 [PMID: 16415927]
  12. Appl Microbiol. 1968 Sep;16(9):1326-30 [PMID: 5676407]
  13. J Basic Microbiol. 2007 Apr;47(2):184-90 [PMID: 17440921]
  14. Nat Genet. 2006 Dec;38(12):1406-12 [PMID: 17086184]
  15. Crit Rev Biochem Mol Biol. 2007 Sep-Oct;42(5):327-39 [PMID: 17917870]
  16. Proc R Soc Lond B Biol Sci. 1965 Oct 12;163(991):224-31 [PMID: 4378482]
  17. Hepatology. 2008 Oct;48(4):1184-92 [PMID: 18697211]
  18. Microb Ecol. 1991 Dec;21(1):35-48 [PMID: 24194200]
  19. Mol Genet Genomics. 2005 Aug;274(1):1-12 [PMID: 15809868]
  20. Proc Natl Acad Sci U S A. 2001 Mar 13;98(6):3446-53 [PMID: 11248098]
  21. Crit Rev Microbiol. 2006;32(3):155-83 [PMID: 16893752]
  22. BMC Genomics. 2006 May 24;7:126 [PMID: 16723015]
  23. Plant Physiol. 1993 Jul;102(3):983-9 [PMID: 8278539]
  24. Annu Rev Microbiol. 2007;61:215-36 [PMID: 18035607]
  25. Mol Microbiol. 2004 Nov;54(4):855-62 [PMID: 15522072]
  26. J Bacteriol. 2005 May;187(10):3589-92 [PMID: 15866950]
  27. BMC Microbiol. 2005 Jun 27;5:39 [PMID: 15982422]
  28. Arch Microbiol. 1984 Feb;137(2):176-84 [PMID: 6202266]
  29. PLoS Comput Biol. 2009 Jun;5(6):e1000410 [PMID: 19521528]
  30. PLoS Biol. 2006 Oct;4(11):e351 [PMID: 17048990]
  31. Appl Environ Microbiol. 1999 Jun;65(6):2471-7 [PMID: 10347029]
  32. FEMS Microbiol Rev. 2005 Aug;29(3):591-610 [PMID: 15935512]
  33. Curr Opin Microbiol. 2008 Apr;11(2):100-5 [PMID: 18359660]
  34. Appl Environ Microbiol. 1996 Jan;62(1):147-51 [PMID: 16535205]
  35. Appl Environ Microbiol. 2005 May;71(5):2365-71 [PMID: 15870323]
  36. Ann Bot. 2005 Apr;95(5):707-35 [PMID: 15749753]
  37. J Exp Bot. 2008;59(12):3415-23 [PMID: 18653690]
  38. Phytopathology. 1999 May;89(5):353-9 [PMID: 18944746]
  39. Arch Microbiol. 1986 Nov;146(2):151-8 [PMID: 3541827]
  40. Antonie Van Leeuwenhoek. 1986;52(4):325-42 [PMID: 3532947]
  41. Antonie Van Leeuwenhoek. 1993;63(3-4):243-74 [PMID: 8279823]

MeSH Term

Amino Acids
Bacterial Physiological Phenomena
Biomass
Carbon
Energy Metabolism
Glucose
Hormones
Ketoglutaric Acids
Lactic Acid
Lactobacillus plantarum
Models, Biological
Transcription, Genetic

Chemicals

Amino Acids
Hormones
Ketoglutaric Acids
Lactic Acid
Carbon
Glucose

Word Cloud

Created with Highcharts 10.0.0growthplantarumextremelyslowLplantsubstrateavailabilityconditionsLactobacillusphysiologyslow-growingproductionplant-derivedSituationslowresultingcommonnaturalenvironmentsmimicgrowncarbon-limitedretentostatcompletebiomassretentionplantarum--asstudiedgenome-scalemodelingtranscriptomics--wasfundamentallydifferentstationary-phasecellsStressresistancemechanismsmassivelyinducedtransitionenergy-generatingmetabolismremarkablystableremainedlargelybasedconversionglucoselactatecombinationmetabolictranscriptomicanalysesrevealedbehaviorsinvolvedinteractionsenvironmentparticularlyplants:hormonesprecursorsthereofpreparednessutilizationsubstratesAccordinglycompoundsinterferingrootdevelopmentdemonstratedThuslimitedseemtriggerenvironment-likeresponseevenabsencematerialsuggestingmightconstituteintrinsicbehaviorUnderstandingzero

Similar Articles

Cited By