Neprilysin is identical to skin fibroblast elastase: its role in skin aging and UV responses.

Naoko Morisaki, Shigeru Moriwaki, Yoriko Sugiyama-Nakagiri, Keiichi Haketa, Yoshinori Takema, Genji Imokawa
Author Information
  1. Naoko Morisaki: Kao Biological Science Laboratories, 2606 Akabane, Ichikaimachi, Haga, Tochigi 321-3497, Japan.

Abstract

Although human skin fibroblast (HSF) elastase has been characterized as a membrane-bound metalloproteinase, little is known about its structure, amino acid sequence, and encoding gene. As there are similarities in the molecular weights and inhibitory profiles of HSF elastase and neprilysin (neutral endopeptidase 24.11 (NEP)), in this study we tested the hypothesis that they are identical using immunoprecipitation and transfection methods. An immunoprecipitation study demonstrated that HSF elastase activity co-immunoprecipitated with anti-NEP in lysates of cultured HSF. Transfection of an NEP cDNA expression vector into COS-1 cells elicited the expression of HSF elastase and NEP activities in the transfected cells. These findings strongly suggest that HSF elastase is identical to NEP, which functions mainly in neuron-associated cells to degrade neuropeptides. Analysis of the expression pattern of NEP revealed that its expression was remarkably up-regulated at the gene, protein, and enzymatic activity levels during the replicative senescence of cultured HSF. Further, the activity of NEP was markedly enhanced in a pattern similar to elastase activity during the intrinsic aging of mouse skin, in UVA-exposed HSF as well as in HSF treated with conditioned medium from UVB-exposed human keratinocytes. Analysis of the cytokine profile for the stimulation of NEP and HSF elastase activities in HSF demonstrated that among the 11 cytokines tested, IL-1α, IL-1β, IL-6, IL-8, and GM-CSF had the potential to significantly stimulate both activities similarly, again supporting the identity of HSF elastase and NEP.

References

  1. Basic Res Cardiol. 1998 Feb;93(1):11-7 [PMID: 9538932]
  2. J Med Chem. 1994 Feb 18;37(4):498-511 [PMID: 8120868]
  3. J Cell Biol. 1988 Mar;106(3):667-76 [PMID: 3279049]
  4. Nihon Yakurigaku Zasshi. 1993 Apr;101(4):197-207 [PMID: 8390390]
  5. Photochem Photobiol. 2001 Aug;74(2):283-90 [PMID: 11547567]
  6. Am J Med. 1995 Jan 16;98(1A):99S-103S [PMID: 7825648]
  7. J Biol Chem. 1995 Nov 10;270(45):26931-9 [PMID: 7592939]
  8. FASEB J. 1997 Sep;11(11):869-79 [PMID: 9285485]
  9. Am J Respir Cell Mol Biol. 1994 Jun;10(6):635-42 [PMID: 8003340]
  10. J Invest Dermatol. 1991 Jul;97(1):10-4 [PMID: 2056179]
  11. Am J Respir Cell Mol Biol. 1991 Jun;4(6):497-503 [PMID: 1711351]
  12. Neurosci Lett. 1997 Sep 26;234(1):27-30 [PMID: 9347938]
  13. Exp Neurol. 2005 Sep;195(1):179-84 [PMID: 15963503]
  14. Cancer Res. 1996 Feb 15;56(4):831-9 [PMID: 8631021]
  15. Am J Respir Cell Mol Biol. 1993 Jan;8(1):43-9 [PMID: 8380249]
  16. Mech Ageing Dev. 1996 Nov 29;92(1):31-41 [PMID: 9032753]
  17. J Clin Invest. 1988 Dec;82(6):1963-73 [PMID: 3198760]
  18. Mech Ageing Dev. 1998 May 1;102(1):15-23 [PMID: 9663788]
  19. Biochem J. 1987 Dec 1;248(2):345-50 [PMID: 3481263]
  20. J Biol Chem. 1991 Apr 25;266(12):7870-5 [PMID: 1850424]
  21. Inflammation. 1998 Feb;22(1):107-21 [PMID: 9484654]
  22. Ann N Y Acad Sci. 1992 Dec 26;673:16-22 [PMID: 1485713]
  23. J Mol Biol. 2000 Feb 18;296(2):341-9 [PMID: 10669592]
  24. J Invest Dermatol. 1988 Nov;91(5):472-7 [PMID: 3049835]
  25. Dermatology. 1998;196(4):397-400 [PMID: 9669114]
  26. J Exp Med. 1988 Oct 1;168(4):1247-53 [PMID: 2971756]
  27. Hautarzt. 1996 Jul;47(7):515-20 [PMID: 8926166]
  28. Photodermatol Photoimmunol Photomed. 1994 Apr;10(2):74-9 [PMID: 8043388]
  29. J Antibiot (Tokyo). 1973 Oct;26(10):621-3 [PMID: 4792110]
  30. Photodermatol Photoimmunol Photomed. 1991 Oct;8(5):195-9 [PMID: 1822682]
  31. J Biol Chem. 1996 Feb 23;271(8):4335-41 [PMID: 8626782]
  32. Pathol Biol (Paris). 1996 Dec;44(10):867-74 [PMID: 9157366]
  33. J Biol Chem. 1990 Aug 25;265(24):14150-5 [PMID: 2201681]
  34. J Biol Chem. 1992 Mar 5;267(7):4664-71 [PMID: 1537850]
  35. Pathol Biol (Paris). 1988 Nov;36(9):1133-8 [PMID: 3065704]
  36. Pharmacol Rev. 1993 Mar;45(1):87-146 [PMID: 8475170]
  37. Eur Respir J. 1991 Jun;4(6):745-54 [PMID: 1889501]
  38. Biochem J. 1974 Mar;137(3):477-88 [PMID: 4423492]
  39. Cell Biol Int. 1994 Jul;18(7):715-22 [PMID: 7920378]
  40. Nature. 1980 Nov 20;288(5788):286-8 [PMID: 7001254]
  41. J Biol Chem. 1991 Dec 5;266(34):23041-7 [PMID: 1744100]
  42. Biochem Cell Biol. 2008 Apr;86(2):178-83 [PMID: 18443631]
  43. Br J Dermatol. 2005 Dec;153 Suppl 2:13-22 [PMID: 16280017]
  44. J Neuroimmunol. 1992 Nov;41(1):9-14 [PMID: 1281168]
  45. Br J Dermatol. 1994 Nov;131(5):641-8 [PMID: 7999594]
  46. Clin Chim Acta. 1988 Aug 31;176(2):219-24 [PMID: 3180471]

MeSH Term

Aging
Animals
COS Cells
Chlorocebus aethiops
Culture Media, Conditioned
Cytokines
Female
Fibroblasts
Humans
Keratinocytes
Mice
Mice, Inbred ICR
Neprilysin
Pancreatic Elastase
Skin
Ultraviolet Rays

Chemicals

Culture Media, Conditioned
Cytokines
Pancreatic Elastase
Neprilysin

Word Cloud

Created with Highcharts 10.0.0HSFelastaseNEPskinactivityexpressionidenticalcellsactivitieshumanfibroblastgene11studytestedimmunoprecipitationdemonstratedculturedAnalysispatternagingAlthoughcharacterizedmembrane-boundmetalloproteinaselittleknownstructureaminoacidsequenceencodingsimilaritiesmolecularweightsinhibitoryprofilesneprilysinneutralendopeptidase24hypothesisusingtransfectionmethodsco-immunoprecipitatedanti-NEPlysatesTransfectioncDNAvectorCOS-1elicitedtransfectedfindingsstronglysuggestfunctionsmainlyneuron-associateddegradeneuropeptidesrevealedremarkablyup-regulatedproteinenzymaticlevelsreplicativesenescencemarkedlyenhancedsimilarintrinsicmouseUVA-exposedwelltreatedconditionedmediumUVB-exposedkeratinocytescytokineprofilestimulationamongcytokinesIL-1αIL-1βIL-6IL-8GM-CSFpotentialsignificantlystimulatesimilarlysupportingidentityNeprilysinelastase:roleUVresponses

Similar Articles

Cited By