Effect of exposure to 1,800 MHz electromagnetic fields on heat shock proteins and glial cells in the brain of developing rats.

Aurélie Watilliaux, Jean-Marc Edeline, Philippe Lévêque, Thérèse M Jay, Michel Mallat
Author Information
  1. Aurélie Watilliaux: Inserm, UMR 894, Physiopathologie des Maladies Psychiatriques, Centre de Psychiatrie et Neurosciences, Paris, France.

Abstract

The increasing use of mobile phones by children raise issues about the effects of electromagnetic fields (EMF) on the immature Central Nervous System (CNS). In the present study, we quantified cell stress and glial responses in the brain of developing rats one day after a single exposure of 2 h to a GSM 1,800 MHz signal at a brain average Specific Absorption Rate (SAR) in the range of 1.7 to 2.5 W/kg. Young rats, exposed to EMF on postnatal days (P) 5 (n = 6), 15 (n = 5) or 35 (n = 6), were compared to pseudo-exposed littermate rats (n = 6 at all ages). We used western blotting to detect heat shock proteins (HSPs) and cytoskeleton- or neurotransmission-related proteins in the developing astroglia. The GSM signal had no significant effect on the abundance of HSP60, HSC70 or HSP90, of serine racemase, glutamate transporters including GLT1 and GLAST, or of glial fibrillary acid protein (GFAP) in either total or soluble tissue extracts. Imunohistochemical detection of CD68 antigen in brain sections from pseudo-exposed and exposed animals did not reveal any differences in the morphology or distribution of microglial cells. These results provide no evidence for acute cell stress or glial reactions indicative of early neural cell damage, in developing brains exposed to 1,800 MHz signals in the range of SAR used in our study.

References

  1. Neuroscience. 1995 Nov;69(1):177-87 [PMID: 8637616]
  2. Brain Res. 2009 Apr 10;1265:178-85 [PMID: 19230827]
  3. Radiat Res. 2002 Feb;157(2):183-90 [PMID: 11835682]
  4. Brain Res. 2010 Oct 14;1356:95-101 [PMID: 20691167]
  5. Toxicol Ind Health. 2009 Jul;25(6):377-84 [PMID: 19671630]
  6. Toxicology. 2007 Aug 16;238(1):23-33 [PMID: 17624651]
  7. Neurochem Int. 2006 Apr;48(5):394-403 [PMID: 16473439]
  8. Brain Res. 2010 Jan 22;1311:189-96 [PMID: 19879861]
  9. Curr Opin Neurobiol. 2004 Jun;14(3):346-52 [PMID: 15194115]
  10. J Neurosci. 2008 Nov 12;28(46):12039-51 [PMID: 19005069]
  11. Environ Health Perspect. 2003 Jun;111(7):881-3; discussion A408 [PMID: 12782486]
  12. Bioelectromagnetics. 2010 Feb;31(2):104-12 [PMID: 19650078]
  13. Neurosci Res. 2005 Nov;53(3):265-70 [PMID: 16102863]
  14. Cereb Cortex. 2003 Jun;13(6):541-9 [PMID: 12764027]
  15. J Neurochem. 1990 Feb;54(2):451-8 [PMID: 1688918]
  16. Radiat Res. 1997 May;147(5):631-40 [PMID: 9146709]
  17. Behav Brain Res. 2002 Feb 1;129(1-2):203-10 [PMID: 11809512]
  18. J Cereb Blood Flow Metab. 2007 Jul;27(7):1327-38 [PMID: 17213861]
  19. Neurobiol Dis. 2004 Dec;17(3):445-54 [PMID: 15571980]
  20. Bioelectromagnetics. 2007 Sep;28(6):415-32 [PMID: 17503518]
  21. Bioelectromagnetics. 2000 Dec;21(8):566-74 [PMID: 11102946]
  22. Nat Neurosci. 2007 Nov;10(11):1387-94 [PMID: 17965659]
  23. Radiat Res. 2002 Sep;158(3):357-64 [PMID: 12175314]
  24. Nat Rev Neurosci. 2005 Aug;6(8):626-40 [PMID: 16025096]
  25. Trends Neurosci. 1996 Aug;19(8):312-8 [PMID: 8843599]
  26. Behav Brain Res. 2003 Oct 17;145(1-2):51-61 [PMID: 14529805]
  27. Nat Rev Neurosci. 2006 Mar;7(3):194-206 [PMID: 16495941]
  28. Cell. 2006 May 19;125(4):775-84 [PMID: 16713567]
  29. Brain Res. 2008 Oct 31;1238:224-9 [PMID: 18761003]
  30. Glia. 2000 Apr;30(2):143-53 [PMID: 10719356]
  31. J Neurosci Res. 1999 Jan 15;55(2):238-44 [PMID: 9972826]
  32. Radiat Res. 2009 Jul;172(1):66-73 [PMID: 19580508]
  33. Radiat Res. 2001 Dec;156(6):775-85 [PMID: 11741502]
  34. Radiat Res. 2008 Oct;170(4):488-97 [PMID: 19024656]
  35. Biomed Pharmacother. 2008 Apr-May;62(4):273-81 [PMID: 18424058]
  36. Radiat Res. 2001 Apr;155(4):572-83 [PMID: 11260659]
  37. Brain Pathol. 1994 Jul;4(3):229-37 [PMID: 7952264]
  38. Neuroscience. 1997 Dec;81(3):627-39 [PMID: 9316016]
  39. J Neurosci. 2002 Aug 15;22(16):6972-9 [PMID: 12177195]

MeSH Term

Age Factors
Amino Acid Transport System X-AG
Animals
Animals, Newborn
Brain
Cell Count
Electromagnetic Fields
Embryo, Mammalian
Female
Gene Expression Regulation, Developmental
Glial Fibrillary Acidic Protein
Heat-Shock Proteins
Male
Neuroglia
Pregnancy
Racemases and Epimerases
Rats
Rats, Wistar

Chemicals

Amino Acid Transport System X-AG
Glial Fibrillary Acidic Protein
Heat-Shock Proteins
Racemases and Epimerases
serine racemase

Word Cloud

Created with Highcharts 10.0.0glialbraindevelopingrats1cellexposedn = 6proteinselectromagneticfieldsEMFstudystressexposureGSM800 MHzsignalSARrangepseudo-exposedusedheatshockcellsincreasingusemobilephoneschildrenraiseissueseffectsimmatureCentralNervousSystemCNSpresentquantifiedresponsesonedaysingle2 haverageSpecificAbsorptionRate725 W/kgYoungpostnataldaysP515n = 535comparedlittermateageswesternblottingdetectHSPscytoskeleton-neurotransmission-relatedastrogliasignificanteffectabundanceHSP60HSC70HSP90serineracemaseglutamatetransportersincludingGLT1GLASTfibrillaryacidproteinGFAPeithertotalsolubletissueextractsImunohistochemicaldetectionCD68antigensectionsanimalsrevealdifferencesmorphologydistributionmicroglialresultsprovideevidenceacutereactionsindicativeearlyneuraldamagebrainssignalsEffect800MHz

Similar Articles

Cited By