Inferring gene regulatory networks from asynchronous microarray data with AIRnet.

David Oviatt, Mark Clement, Quinn Snell, Kenneth Sundberg, Chun Wan J Lai, Jared Allen, Randall Roper
Author Information
  1. David Oviatt: Department of Computer Science, Brigham Young University, Provo, UT, USA. xkordave@gmail.com

Abstract

BACKGROUND: Modern approaches to treating genetic disorders, cancers and even epidemics rely on a detailed understanding of the underlying gene signaling network. Previous work has used time series microarray data to infer gene signaling networks given a large number of accurate time series samples. Microarray data available for many biological experiments is limited to a small number of arrays with little or no time series guarantees. When several samples are averaged to examine differences in mean value between a diseased and normal state, information from individual samples that could indicate a gene relationship can be lost.
RESULTS: Asynchronous Inference of Regulatory Networks (AIRnet) provides gene signaling network inference using more practical assumptions about the microarray data. By learning correlation patterns for the changes in microarray values from all pairs of samples, accurate network reconstructions can be performed with data that is normally available in microarray experiments.
CONCLUSIONS: By focussing on the changes between microarray samples, instead of absolute values, increased information can be gleaned from expression data.

References

  1. BMC Bioinformatics. 2008 Oct 29;9:461 [PMID: 18959772]
  2. Adv Genet. 2008;60:603-35 [PMID: 18358334]
  3. BMC Bioinformatics. 2007 Jul 05;8:242 [PMID: 17612399]
  4. Amino Acids. 2006 Mar;30(2):127-42 [PMID: 16547652]
  5. Cancer Res. 2008 Apr 15;68(8):2661-70 [PMID: 18413733]
  6. Science. 2002 Mar 1;295(5560):1669-78 [PMID: 11872831]
  7. BMC Med Genet. 2008 Apr 24;9:36 [PMID: 18433508]
  8. Proc Natl Acad Sci U S A. 2005 Apr 5;102(14):4936-42 [PMID: 15788537]
  9. IEEE/ACM Trans Comput Biol Bioinform. 2011 Jan-Mar;8(1):152-65 [PMID: 21071804]
  10. Bioinformatics. 2006 Oct 1;22(19):2413-20 [PMID: 16864593]
  11. Funct Integr Genomics. 2007 Jul;7(3):193-205 [PMID: 17186197]
  12. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 [PMID: 16199517]
  13. JAMA. 2001 Feb 7;285(5):540-4 [PMID: 11176855]
  14. Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15522-7 [PMID: 14673099]
  15. J Comput Biol. 2009 Feb;16(2):229-39 [PMID: 19183003]
  16. Genome Res. 2008 Apr;18(4):644-52 [PMID: 18381899]
  17. Metab Eng. 2003 Jul;5(3):191-200 [PMID: 12948753]

MeSH Term

Algorithms
Animals
Computational Biology
Gene Expression Profiling
Gene Regulatory Networks
Mice
Oligonucleotide Array Sequence Analysis

Word Cloud

Created with Highcharts 10.0.0microarraydatagenesamplessignalingnetworktimeseriescannetworksnumberaccurateavailableexperimentsinformationAIRnetchangesvaluesBACKGROUND:ModernapproachestreatinggeneticdisorderscancersevenepidemicsrelydetailedunderstandingunderlyingPreviousworkusedinfergivenlargeMicroarraymanybiologicallimitedsmallarrayslittleguaranteesseveralaveragedexaminedifferencesmeanvaluediseasednormalstateindividualindicaterelationshiplostRESULTS:AsynchronousInferenceRegulatoryNetworksprovidesinferenceusingpracticalassumptionslearningcorrelationpatternspairsreconstructionsperformednormallyCONCLUSIONS:focussinginsteadabsoluteincreasedgleanedexpressionInferringregulatoryasynchronous

Similar Articles

Cited By