Beneficial metabolic adaptations due to endurance exercise training in the fasted state.

Karen Van Proeyen, Karolina Szlufcik, Henri Nielens, Monique Ramaekers, Peter Hespel
Author Information
  1. Karen Van Proeyen: Research Centre for Exercise and Health, Department of Biomedical Kinesiology, K. U. Leuven, Leuven, Belgium.

Abstract

Training with limited carbohydrate availability can stimulate adaptations in muscle cells to facilitate energy production via fat oxidation. Here we investigated the effect of consistent training in the fasted state, vs. training in the fed state, on muscle metabolism and substrate selection during fasted exercise. Twenty young male volunteers participated in a 6-wk endurance training program (1-1.5 h cycling at ∼70% Vo(₂max), 4 days/wk) while receiving isocaloric carbohydrate-rich diets. Half of the subjects trained in the fasted state (F; n = 10), while the others ingested ample carbohydrates before (∼160 g) and during (1 g·kg body wt⁻¹·h⁻¹) the training sessions (CHO; n = 10). The training similarly increased Vo(₂max) (+9%) and performance in a 60-min simulated time trial (+8%) in both groups (P < 0.01). Metabolic measurements were made during a 2-h constant-load exercise bout in the fasted state at ∼65% pretraining Vo(₂max). In F, exercise-induced intramyocellular lipid (IMCL) breakdown was enhanced in type I fibers (P < 0.05) and tended to be increased in type IIa fibers (P = 0.07). Training did not affect IMCL breakdown in CHO. In addition, F (+21%) increased the exercise intensity corresponding to the maximal rate of fat oxidation more than did CHO (+6%) (P < 0.05). Furthermore, maximal citrate synthase (+47%) and β-hydroxyacyl coenzyme A dehydrogenase (+34%) activity was significantly upregulated in F (P < 0.05) but not in CHO. Also, only F prevented the development exercise-induced drop in blood glucose concentration (P < 0.05). In conclusion, F is more effective than CHO to increase muscular oxidative capacity and at the same time enhances exercise-induced net IMCL degradation. In addition, F but not CHO prevented drop of blood glucose concentration during fasting exercise.

References

  1. Am J Physiol Endocrinol Metab. 2004 Jan;286(1):E144-50 [PMID: 14506077]
  2. J Appl Physiol (1985). 1986 Jul;61(1):165-72 [PMID: 3525502]
  3. Am J Physiol. 1995 Mar;268(3 Pt 1):E375-83 [PMID: 7900783]
  4. J Appl Physiol (1985). 2008 Nov;105(5):1462-70 [PMID: 18772325]
  5. Med Sci Sports Exerc. 1998 Mar;30(3):456-61 [PMID: 9526894]
  6. Biochem Biophys Res Commun. 2006 Apr 14;342(3):949-55 [PMID: 16598851]
  7. Acta Physiol (Oxf). 2009 Oct;197(2):117-27 [PMID: 19432594]
  8. J Physiol. 2005 Apr 15;564(Pt 2):649-60 [PMID: 15705646]
  9. J Physiol. 1996 Apr 1;492 ( Pt 1):293-306 [PMID: 8730603]
  10. J Sci Med Sport. 2010 Jul;13(4):465-9 [PMID: 20452283]
  11. Am J Physiol. 1999 Apr;276(4):E672-83 [PMID: 10198303]
  12. Proc Nutr Soc. 1995 Mar;54(1):107-21 [PMID: 7568245]
  13. Can J Sport Sci. 1991 Mar;16(1):23-9 [PMID: 1645211]
  14. Am J Physiol Endocrinol Metab. 2005 Dec;289(6):E1023-9 [PMID: 16030063]
  15. Diabetes. 2003 Aug;52(8):1881-7 [PMID: 12882901]
  16. Am J Physiol. 1991 Jun;260(6 Pt 1):E811-24 [PMID: 2058658]
  17. J Appl Physiol (1985). 2000 Dec;89(6):2413-21 [PMID: 11090597]
  18. J Appl Physiol (1985). 2008 Apr;104(4):1045-55 [PMID: 18276898]
  19. Am J Physiol Endocrinol Metab. 2006 Feb;290(2):E380-8 [PMID: 16188909]
  20. Am J Physiol. 1991 Jul;261(1 Pt 1):C71-6 [PMID: 1858860]
  21. Am J Physiol. 1993 Dec;265(6 Pt 1):E852-9 [PMID: 8279540]
  22. J Appl Physiol (1985). 2010 Jul;109(1):126-34 [PMID: 20466803]
  23. Am J Clin Nutr. 2003 Feb;77(2):313-8 [PMID: 12540388]
  24. Am J Physiol. 1997 May;272(5 Pt 2):R1620-4 [PMID: 9176356]
  25. J Appl Physiol (1985). 2000 May;88(5):1765-76 [PMID: 10797141]
  26. J Appl Physiol (1985). 1988 Oct;65(4):1553-5 [PMID: 3182519]
  27. J Appl Physiol Respir Environ Exerc Physiol. 1983 Jul;55(1 Pt 1):230-5 [PMID: 6350247]
  28. J Appl Physiol (1985). 2005 Jan;98(1):93-9 [PMID: 15361516]
  29. J Appl Physiol (1985). 2009 Jun;106(6):1771-9 [PMID: 19228984]
  30. J Appl Physiol (1985). 2005 Oct;99(4):1359-63 [PMID: 15932964]
  31. J Appl Physiol (1985). 1998 Apr;84(4):1413-7 [PMID: 9516211]
  32. J Appl Physiol (1985). 2000 Dec;89(6):2220-6 [PMID: 11090571]
  33. J Appl Physiol (1985). 2007 Jan;102(1):183-8 [PMID: 17008436]
  34. J Clin Invest. 1974 Apr;53(4):1080-90 [PMID: 4815076]
  35. Med Sci Sports Exerc. 2002 Jan;34(1):92-7 [PMID: 11782653]
  36. J Appl Physiol (1985). 2001 Nov;91(5):2125-34 [PMID: 11641353]
  37. J Appl Physiol (1985). 2009 May;106(5):1513-21 [PMID: 19265068]
  38. Am J Physiol. 1997 Oct;273(4):E768-75 [PMID: 9357807]
  39. Metabolism. 1999 Dec;48(12):1509-17 [PMID: 10599981]
  40. J Appl Physiol (1985). 2006 Jan;100(1):194-202 [PMID: 16141377]
  41. J Appl Physiol (1985). 1999 Sep;87(3):1083-6 [PMID: 10484580]
  42. Am J Physiol. 1985 Mar;248(3 Pt 2):R302-7 [PMID: 2983573]
  43. J Sports Sci. 2006 Jul;24(7):709-21 [PMID: 16766500]
  44. Am J Physiol. 1998 Apr;274(4):R894-902 [PMID: 9575949]
  45. Am J Physiol. 1999 Jan;276(1):E106-17 [PMID: 9886956]
  46. J Appl Physiol (1985). 1995 Jan;78(1):288-92 [PMID: 7713825]
  47. J Physiol. 1999 Mar 1;515 ( Pt 2):579-89 [PMID: 10050023]
  48. Biochem J. 1992 Jun 15;284 ( Pt 3):777-80 [PMID: 1622395]
  49. J Physiol. 2003 Dec 1;553(Pt 2):611-25 [PMID: 14514877]
  50. J Appl Physiol (1985). 2000 Dec;89(6):2352-8 [PMID: 11090589]
  51. Am J Physiol Endocrinol Metab. 2009 Mar;296(3):E445-53 [PMID: 19106247]
  52. Med Sci Sports Exerc. 2010 Nov;42(11):2046-55 [PMID: 20351596]
  53. J Physiol. 2001 Dec 15;537(Pt 3):1009-20 [PMID: 11744773]
  54. J Appl Physiol (1985). 2008 Aug;105(2):561-8 [PMID: 18511526]

MeSH Term

Adaptation, Physiological
Blood Glucose
Exercise
Fasting
Humans
Male
Oxygen Consumption
Physical Endurance
Physical Fitness
Young Adult

Chemicals

Blood Glucose

Word Cloud

Created with Highcharts 10.0.0FtrainingCHOP0fastedstateexercise<05Vo₂max=increasedexercise-inducedIMCLTrainingadaptationsmusclefatoxidationendurancen10timebreakdowntypefibersadditionmaximalpreventeddropbloodglucoseconcentrationlimitedcarbohydrateavailabilitycanstimulatecellsfacilitateenergyproductionviainvestigatedeffectconsistentvsfedmetabolismsubstrateselectionTwentyyoungmalevolunteersparticipated6-wkprogram1-15hcycling∼70%4days/wkreceivingisocaloriccarbohydrate-richdietsHalfsubjectstrainedothersingestedamplecarbohydrates∼160g1g·kgbodywt⁻¹·h⁻¹sessionssimilarly+9%performance60-minsimulatedtrial+8%groups01Metabolicmeasurementsmade2-hconstant-loadbout∼65%pretrainingintramyocellularlipidenhancedtendedIIa07affect+21%intensitycorrespondingrate+6%Furthermorecitratesynthase+47%β-hydroxyacylcoenzymedehydrogenase+34%activitysignificantlyupregulatedAlsodevelopmentconclusioneffectiveincreasemuscularoxidativecapacityenhancesnetdegradationfastingBeneficialmetabolicdue

Similar Articles

Cited By