Computer-aided drug design platform using PyMOL.

Markus A Lill, Matthew L Danielson
Author Information
  1. Markus A Lill: Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA. mlill@purdue.edu

Abstract

The understanding and optimization of protein-ligand interactions are instrumental to medicinal chemists investigating potential drug candidates. Over the past couple of decades, many powerful standalone tools for computer-aided drug discovery have been developed in academia providing insight into protein-ligand interactions. As programs are developed by various research groups, a consistent user-friendly graphical working environment combining computational techniques such as docking, scoring, molecular dynamics simulations, and free energy calculations is needed. Utilizing PyMOL we have developed such a graphical user interface incorporating individual academic packages designed for protein preparation (AMBER package and Reduce), molecular mechanics applications (AMBER package), and docking and scoring (AutoDock Vina and SLIDE). In addition to amassing several computational tools under one interface, the computational platform also provides a user-friendly combination of different programs. For example, utilizing a molecular dynamics (MD) simulation performed with AMBER as input for ensemble docking with AutoDock Vina. The overarching goal of this work was to provide a computational platform that facilitates medicinal chemists, many who are not experts in computational methodologies, to utilize several common computational techniques germane to drug discovery. Furthermore, our software is open source and is aimed to initiate collaborative efforts among computational researchers to combine other open source computational methods under a single, easily understandable graphical user interface.

References

  1. Expert Opin Drug Metab Toxicol. 2005 Jun;1(1):1-4 [PMID: 16922647]
  2. J Mol Model. 2009 Oct;15(10):1175-84 [PMID: 19263098]
  3. J Comput Chem. 2009 Dec;30(16):2785-91 [PMID: 19399780]
  4. Nucleic Acids Res. 2000 Jan 1;28(1):235-42 [PMID: 10592235]
  5. J Comput Aided Mol Des. 2002 Dec;16(12):883-902 [PMID: 12825621]
  6. Proteins. 2010 May 15;78(7):1748-59 [PMID: 20186974]
  7. J Chem Inf Model. 2009 Dec;49(12):2813-9 [PMID: 19950979]
  8. Curr Med Chem. 2000 Feb;7(2):141-58 [PMID: 10637360]
  9. PLoS Comput Biol. 2009 Oct;5(10):e1000528 [PMID: 19816553]
  10. J Chem Inf Model. 2007 Jan-Feb;47(1):122-33 [PMID: 17238257]
  11. J Mol Biol. 2008 Mar 28;377(3):914-34 [PMID: 18280498]
  12. J Med Chem. 2008 Dec 11;51(23):7469-77 [PMID: 18998665]
  13. J Med Chem. 2006 Jun 1;49(11):3278-86 [PMID: 16722646]
  14. J Mol Biol. 1999 Jan 29;285(4):1735-47 [PMID: 9917408]
  15. Proteins. 2004 May 1;55(2):383-94 [PMID: 15048829]
  16. J Chem Theory Comput. 2008 Mar;4(3):435-47 [PMID: 26620784]
  17. J Comput Chem. 2005 Dec;26(16):1668-88 [PMID: 16200636]
  18. Bioinformatics. 2006 Jun 1;22(11):1397-8 [PMID: 16595557]
  19. J Comput Aided Mol Des. 2010 May;24(5):417-22 [PMID: 20401516]
  20. Nucleic Acids Res. 2010 Jan;38(Database issue):D355-60 [PMID: 19880382]
  21. J Phys Chem B. 2010 Apr 22;114(15):5144-53 [PMID: 20337446]
  22. Prog Med Chem. 2003;41:61-97 [PMID: 12774691]
  23. Proteins. 2008 Feb 15;70(3):834-43 [PMID: 17729286]
  24. J Chem Inf Model. 2006 May-Jun;46(3):991-8 [PMID: 16711717]
  25. Curr Opin Chem Biol. 2004 Aug;8(4):365-70 [PMID: 15288245]
  26. J Chem Inf Model. 2005 Jan-Feb;45(1):177-82 [PMID: 15667143]
  27. J Comput Chem. 2010 Jan 30;31(2):455-61 [PMID: 19499576]
  28. Genome Res. 1999 Nov;9(11):1106-15 [PMID: 10568750]
  29. J Comput Aided Mol Des. 2009 Feb;23(2):63-71 [PMID: 18781280]
  30. Biopolymers. 1990 Aug 15-Sep;29(10-11):1409-21 [PMID: 2361153]
  31. Nucleic Acids Res. 2007 Jan;35(Database issue):D301-3 [PMID: 17142228]

MeSH Term

Computer Simulation
Computer-Aided Design
Drug Design
Models, Molecular
Protein Binding
Software
User-Computer Interface

Word Cloud

Created with Highcharts 10.0.0computationaldrugdevelopedgraphicaldockingmolecularinterfaceAMBERplatformprotein-ligandinteractionsmedicinalchemistsmanytoolsdiscoveryprogramsuser-friendlytechniquesscoringdynamicsPyMOLuserpackageAutoDockVinaseveralopensourceunderstandingoptimizationinstrumentalinvestigatingpotentialcandidatespastcoupledecadespowerfulstandalonecomputer-aidedacademiaprovidinginsightvariousresearchgroupsconsistentworkingenvironmentcombiningsimulationsfreeenergycalculationsneededUtilizingincorporatingindividualacademicpackagesdesignedproteinpreparationReducemechanicsapplicationsSLIDEadditionamassingonealsoprovidescombinationdifferentexampleutilizingMDsimulationperformedinputensembleoverarchinggoalworkprovidefacilitatesexpertsmethodologiesutilizecommongermaneFurthermoresoftwareaimedinitiatecollaborativeeffortsamongresearcherscombinemethodssingleeasilyunderstandableComputer-aideddesignusing

Similar Articles

Cited By