Engineered biosynthesis of gilvocarcin analogues with altered deoxyhexopyranose moieties.

Micah D Shepherd, Tao Liu, Carmen Méndez, Jose A Salas, Jürgen Rohr
Author Information
  1. Micah D Shepherd: Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536-0596, USA.

Abstract

A combinatorial biosynthetic approach was used to interrogate the donor substrate flexibility of GilGT, the glycosyltransferase involved in C-glycosylation during gilvocarcin biosynthesis. Complementation of gilvocarcin mutant Streptomyces lividans TK24 (cosG9B3-U(-)), in which the biosynthesis of the natural sugar donor substrate was compromised, with various deoxysugar plasmids led to the generation of six gilvocarcin analogues with altered saccharide moieties. Characterization of the isolated gilvocarcin derivatives revealed five new compounds, including 4-β-C-D-olivosyl-gilvocarcin V (D-olivosyl GV), 4-β-C-D-olivosyl-gilvocarcin M (D-olivosyl GM), 4-β-C-D-olivosyl-gilvocarcin E (D-olivosyl GE), 4-α-C-L-rhamnosyl-gilvocarcin M (polycarcin M), 4-α-C-L-rhamnosyl-gilvocarcin E (polycarcin E), and the recently characterized 4-α-C-L-rhamnosyl-gilvocarcin V (polycarcin V). Preliminary anticancer assays showed that D-olivosyl-gilvocarcin and polycarcin V exhibit antitumor activities comparable to that of their parent drug congener, gilvocarcin V, against human lung cancer (H460), murine lung cancer (LL/2), and breast cancer (MCF-7) cell lines. Our findings demonstrate GilGT to be a moderately flexible C-glycosyltransferase able to transfer both D- and L-hexopyranose moieties to the unique angucyclinone-derived benzo[D]naphtho[1,2b]pyran-6-one backbone of the gilvocarcins.

References

  1. Chembiochem. 2006 Jul;7(7):1070-7 [PMID: 16795121]
  2. J Antibiot (Tokyo). 1998 Dec;51(12):1105-8 [PMID: 10048570]
  3. Biochem J. 1997 Sep 15;326 ( Pt 3):929-39 [PMID: 9334165]
  4. J Antibiot (Tokyo). 1981 Dec;34(12):1544-55 [PMID: 7344705]
  5. Curr Opin Chem Biol. 2009 Apr;13(2):152-60 [PMID: 19251468]
  6. J Antibiot (Tokyo). 1991 Oct;44(10):1054-60 [PMID: 1955386]
  7. J Bacteriol. 1999 Jan;181(1):204-11 [PMID: 9864331]
  8. Photochem Photobiol. 1994 Sep;60(3):225-30 [PMID: 7972373]
  9. Angew Chem Int Ed Engl. 2008;47(51):9814-59 [PMID: 19058170]
  10. Curr Opin Chem Biol. 2008 Oct;12(5):556-64 [PMID: 18678278]
  11. J Natl Cancer Inst. 1990 Jul 4;82(13):1113-8 [PMID: 2359137]
  12. Cancer Res. 2000 Jul 15;60(14):3921-6 [PMID: 10919670]
  13. J Antibiot (Tokyo). 1981 Mar;34(3):266-70 [PMID: 7275807]
  14. J Am Chem Soc. 2003 Jul 2;125(26):7818-9 [PMID: 12822997]
  15. Appl Microbiol Biotechnol. 2008 Oct;80(6):945-52 [PMID: 18777021]
  16. J Mol Biol. 2003 Apr 25;328(2):307-17 [PMID: 12691742]
  17. Chembiochem. 2009 May 25;10(8):1305-8 [PMID: 19388008]
  18. Org Biomol Chem. 2010 Sep 7;8(17):3851-6 [PMID: 20617244]
  19. Nucleic Acids Res. 1992 Sep 11;20(17):4553-7 [PMID: 1408756]
  20. J Antibiot (Tokyo). 1983 Apr;36(4):355-61 [PMID: 6853365]
  21. J Mol Microbiol Biotechnol. 2000 Jul;2(3):271-6 [PMID: 10937435]
  22. Chem Biol. 2004 Dec;11(12):1709-18 [PMID: 15610855]
  23. Chem Biol. 2002 Jun;9(6):721-9 [PMID: 12079784]
  24. Chem Biol Interact. 1988;67(3-4):267-74 [PMID: 3191537]
  25. Mol Microbiol. 2005 Oct;58(1):17-27 [PMID: 16164546]
  26. Photochem Photobiol. 1998 Jul;68(1):25-31 [PMID: 9679448]
  27. Chembiochem. 2008 Mar 3;9(4):624-33 [PMID: 18224649]
  28. Chembiochem. 2009 Jan 26;10(2):278-86 [PMID: 19067453]
  29. Biochemistry. 1978 Nov 14;17(23):4955-64 [PMID: 718868]
  30. J Nat Prod. 2008 Feb;71(2):199-207 [PMID: 18197601]
  31. Photochem Photobiol. 1995 Sep;62(3):409-15 [PMID: 8570700]
  32. J Antibiot (Tokyo). 1991 Oct;44(10):1061-4 [PMID: 1955387]
  33. Appl Environ Microbiol. 2006 Oct;72(10):6644-52 [PMID: 17021216]
  34. J Natl Cancer Inst. 1990 Jul 4;82(13):1107-12 [PMID: 2359136]
  35. Org Biomol Chem. 2008 Oct 7;6(19):3601-5 [PMID: 19082162]
  36. BMC Struct Biol. 2006 Dec 13;6:26 [PMID: 17166288]
  37. J Antibiot (Tokyo). 1982 Sep;35(9):1194-201 [PMID: 7142022]
  38. J Antibiot (Tokyo). 1981 Mar;34(3):271-5 [PMID: 7275808]
  39. Science. 1984 Jan 6;223(4631):69-71 [PMID: 6229029]
  40. Chembiochem. 2010 Mar 1;11(4):523-32 [PMID: 20140934]
  41. Gene. 1992 Feb 1;111(1):61-8 [PMID: 1547955]

Grants

  1. R01 CA102102/NCI NIH HHS
  2. CA 102102/NCI NIH HHS

MeSH Term

Aminoglycosides
Animals
Antineoplastic Agents
Biosynthetic Pathways
Cell Line, Tumor
Cell Survival
Coumarins
Deoxy Sugars
Humans
Mice
Streptomyces lividans

Chemicals

Aminoglycosides
Antineoplastic Agents
Coumarins
Deoxy Sugars
2,4-dideoxyhexopyranose
coumarin

Word Cloud

Created with Highcharts 10.0.0gilvocarcinVpolycarcinbiosynthesismoieties4-β-C-D-olivosyl-gilvocarcinD-olivosylME4-α-C-L-rhamnosyl-gilvocarcincancerdonorsubstrateGilGTanaloguesalteredlungcombinatorialbiosyntheticapproachusedinterrogateflexibilityglycosyltransferaseinvolvedC-glycosylationComplementationmutantStreptomyceslividansTK24cosG9B3-U-naturalsugarcompromisedvariousdeoxysugarplasmidsledgenerationsixsaccharideCharacterizationisolatedderivativesrevealedfivenewcompoundsincludingGVGMGErecentlycharacterizedPreliminaryanticancerassaysshowedD-olivosyl-gilvocarcinexhibitantitumoractivitiescomparableparentdrugcongenerhumanH460murineLL/2breastMCF-7celllinesfindingsdemonstratemoderatelyflexibleC-glycosyltransferaseabletransferD-L-hexopyranoseuniqueangucyclinone-derivedbenzo[D]naphtho[12b]pyran-6-onebackbonegilvocarcinsEngineereddeoxyhexopyranose

Similar Articles

Cited By